Research Article
BibTex RIS Cite

Bor Bazlı Toz Katkılamanın Aramid/Cam Elyaf Hibrit Kompozitlerin Mikrodalga Soğurma Özelliklerine Etkisi

Year 2026, Volume: 28 Issue: 82, 50 - 56, 27.01.2026
https://doi.org/10.21205/deufmd.2026288207

Abstract

Bu çalışmanın amacı, farklı katkı konsantrasyonlarının EKabor-II toz takviyeli aramid-cam elyaf kumaş/epoksi kompozitlerin mikrodalga soğurma performansı üzerindeki etkisini incelemektir. Bu araştırma, havacılık radar teknolojilerinde uygulanabilir yüksek verimli mikrodalga soğurucuların ve yeni malzemelerin geliştirilmesine katkı sağlayabilir. Bu çalışmada, Ekabor-II katkılı aramid/cam elyaf kumaş takviyeli epoksi kompozitlerin mikrodalga soğurma özellikleri incelenmiştir. Ekabor-II, ağırlıkça %0.5 ve %1 olmak üzere iki farklı konsantrasyonda eklenmiştir. Tüm hibrit kompozitler, elle yatırma ve vakum torbalama teknikleri kullanılarak üretilmiştir. Örneklerin mikrodalga özellikleri, 3-18 GHz frekans aralığında çalışan Agilent marka 2-Port PNA-L Ağ Analizörü kullanılarak iletim/yansıma ölçümleri ile incelenmiştir. Bu frekans aralığı, çeşitli yeni kablosuz iletişim bantlarını içermesi nedeniyle özellikle seçilmiştir. Kompozit plakalar iki korna anteni arasına yerleştirilmiştir. Üretilen kompozit malzemelerin elektromanyetik soğurma özellikleri, biri metal plaka ile diğeri ise metalsiz olmak üzere iki farklı deney yöntemi ile değerlendirilmiştir. Deneysel sonuçlar, Ekabor-II takviyeli lamine kompozit malzemenin metal levhalarla kullanıldığında 3-18 GHz frekans aralığında çeşitli izolasyon uygulamaları için uygun olan olumlu soğurma özellikleri sergilediğini göstermektedir. Sonuç olarak, üretilen tüm malzemelerin geniş bir frekans aralığında radom malzemesi olarak kullanılabileceği belirlenmiştir.

References

  • Russo O, Colasante A, Bellaveglia G, Maggio F, Marcellini L, Scialino L, Rolo L, Angevain JC, Midthasse R. State of the Art Materials for KU and KA Band Satellite Antenna Radome. Telecommunications Ground Segments Workshop, ESA/ESTEC; 2012.
  • Pavan CM, Abdul AM, Nikhilesh GP, Sateesh N. Modelling and analysis of aircraft radome using different materials. Materials Today: Proceedings 2022;62:4492–7.
  • Kenion T, Yang N, Xu C. Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: A review. Journal of the European Ceramic Society 2022;42(1):1-17.
  • Yong SM, Lee SJ, Park J, Hong J, Jung JH, Kim Y. Fiber-reinforced plastic material with de-icing capability for radome application. Materials Letters 2021;284(2):128943.
  • Fidan ŞS, Ünal R. A survey on ceramic radome failure types and the importance of defect determination. Engineering Failure Analysis 2023;149:107234.
  • Devaraju S, Alagar M. Polymer Matrix Composite Materials for Aerospace Applications. Encyclopedia of Materials: Composites 2021;1:947-69.
  • Danzer R, Lube T, Supancic P, Damani R. Fracture of ceramics. Advanced Engineering Materials 2008;10(4):275-98. doi:10.1002/ADEM.200700347.
  • Kedar A, Revankar UK. Parametric study of flat sandwich multilayer radome. Progr Electromagnet Res PIER 2006;66:253–65.
  • Aamir MT, Nasir MA, Iqbal Z, Khan HA, Muneer Z. Multi-disciplinary optimization of hybrid composite radomes for enhanced performance. Results in Engineering 2023;20:101547.
  • Hyun JM, Lee JR. Electromagnetic characteristics of 3D-printed composites by free-space measurement. Measurement 2023;217:113022.
  • Choi I, Kim JG, Seo IS. Design of the hybrid composite face with electromagnetic wave transmission characteristics of low-observable radomes. Compos Struct 2012;94:3394-400.
  • Xu X, Zhang B, Liu K, Xing L, Liu D, Bai M. Measurements and analysis of the dielectric properties of aramid/epoxy composites based on free space method under stress conditions. Polym Test 2018;72:55-62.
  • Crone GAE, Rudge AW, Taylor GN. Design and performance of airborne radomes: a review. IEE Proc F Commun Radar Signal Process UK 1981;128(7):451.
  • Zhang H, Chen Y, Song W, Zheng J, Fan C, Shan Z, et al. Preparation of continuous glass fiber reinforced PEEK filaments and high-temperature performance for additive manufacturing. Composites Part B: Engineering 2025;292:112078.
  • Patri MS, Asit B. Chapter 29 - Glass fibre composites for aerospace and other applications. In: Technical Organic and Inorganic Fibres from Natural Resources. Woodhead Publishing in Materials; 2025, p. 795-834.
  • Xu T, Pan Y, Shen Z, Li Z, Zhou Y, Zhang G, et al. Real-time microwave transmittance variation of glass fiber composites subjected to laser irradiation. International Journal of Thermal Sciences 2024;206:109353.
  • Jin DH, Jang MS, Choi JH, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity. Composite Structures 2021;273:114279.
  • Choi I, Kim JG, Lee DG, Seo IS. Aramid/epoxy composites sandwich structures for low-observable radomes. Compos Sci Technol 2011;71:1632-8.
  • Li CL, Jiang DZ, Zeng JC, Ju S. The use of cutting carbon fiber fabric/epoxy composites as band-pass frequency selective surfaces. J Compos Mater 2014;48(18):2281-8.
  • Kim PC, Lee DG, Seo IS, Kim GH. Low-observable radomes composed of composite sandwich constructions and frequency selective surface. Compos Sci Technol 2008;68:2163-70.
  • Choi I, Lee D, Lee DG. Hybrid composite low-observable radome composed of E-glass/aramid/epoxy composite sandwich construction and frequency selective surface. Composite Structures 2014;117:98-104.
  • Kim PC, Lee DG, Seo S, Kim GH. Low-observable radomes composed of composite sandwich constructions and frequency selective surfaces. Composites Science and Technology 2008;68:2163–70.
  • Bradshaw PS. Signature management and structural materials, material and processing-move to the 90’s. In: Proceedings of SAMPE. Amsterdam; 1989, p. 187–96.
  • Domnich V, Reynaud S, Haber RA, Chhowalla M. Boron carbide: Structure, properties, and stability under stress. Journal of the American Ceramic Society 2011;94(11):3605–28.
  • Saracoglu G, Kiriş S, Çoban S, Karaaslan M, Depci T, Bayraktar E. Mechanical and radar absorption properties of sheep wool/epoxy composites. Aircraft Engineering and Aerospace Technology 2024;96(4).
  • Jin C, Wu Z, Zhang R, Qian X, Xu H, Che R. 1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. ACS App Mater Interfaces 2021.
  • Wang Y, Wu X, Zhang W, Luo C, Li J, Wang Y. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Materials Research Bulletin 2018;98:59-63.

Impact of Boron-Based Powder Doping on The Microwave Absorption Characteristics of Aramid/Fiber-Glass Hybrid Composites

Year 2026, Volume: 28 Issue: 82, 50 - 56, 27.01.2026
https://doi.org/10.21205/deufmd.2026288207

Abstract

The goal of this paper is to look into the effect of different doping concentrations on the microwave absorption performance of EKabor-II powder reinforced aramid-fiber glass fabric/epoxy composites. This research may facilitate the development of high-efficiency microwave absorbers and novel materials applicable in aviation radar technologies. This work examines the microwave absorption characteristics of Ekabor-II doped aramid/fiber-glass fabric-reinforced epoxy composites. Ekabor-II was included at two distinct concentrations: 0.5% and 1% by weight. All hybrid composites were produced using the hand lay-up and vacuum bagging techniques. Microwave characteristics of samples were studied using transmission/reflection measurements on an Agilent brand 2-Port PNA-L Network Analyzer with a frequency range of 3-18 GHz. This range was chosen primarily because it contains a variety of new wireless communication bands. The composite plates are placed between two horn antennas. The electromagnetic absorption characteristics of the fabricated composite materials were assessed using two distinct experiments, one with a metal plate and the other without. Experimental results indicate that the Ekabor-II reinforced laminated composite material exhibits favorable absorption characteristics when utilized with metallic sheets, making it suitable for isolation applications at various frequencies within the 3–18 GHz range. As a result, it was determined that all produced material may be utilized as radome material throughout a broad spectrum.

References

  • Russo O, Colasante A, Bellaveglia G, Maggio F, Marcellini L, Scialino L, Rolo L, Angevain JC, Midthasse R. State of the Art Materials for KU and KA Band Satellite Antenna Radome. Telecommunications Ground Segments Workshop, ESA/ESTEC; 2012.
  • Pavan CM, Abdul AM, Nikhilesh GP, Sateesh N. Modelling and analysis of aircraft radome using different materials. Materials Today: Proceedings 2022;62:4492–7.
  • Kenion T, Yang N, Xu C. Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: A review. Journal of the European Ceramic Society 2022;42(1):1-17.
  • Yong SM, Lee SJ, Park J, Hong J, Jung JH, Kim Y. Fiber-reinforced plastic material with de-icing capability for radome application. Materials Letters 2021;284(2):128943.
  • Fidan ŞS, Ünal R. A survey on ceramic radome failure types and the importance of defect determination. Engineering Failure Analysis 2023;149:107234.
  • Devaraju S, Alagar M. Polymer Matrix Composite Materials for Aerospace Applications. Encyclopedia of Materials: Composites 2021;1:947-69.
  • Danzer R, Lube T, Supancic P, Damani R. Fracture of ceramics. Advanced Engineering Materials 2008;10(4):275-98. doi:10.1002/ADEM.200700347.
  • Kedar A, Revankar UK. Parametric study of flat sandwich multilayer radome. Progr Electromagnet Res PIER 2006;66:253–65.
  • Aamir MT, Nasir MA, Iqbal Z, Khan HA, Muneer Z. Multi-disciplinary optimization of hybrid composite radomes for enhanced performance. Results in Engineering 2023;20:101547.
  • Hyun JM, Lee JR. Electromagnetic characteristics of 3D-printed composites by free-space measurement. Measurement 2023;217:113022.
  • Choi I, Kim JG, Seo IS. Design of the hybrid composite face with electromagnetic wave transmission characteristics of low-observable radomes. Compos Struct 2012;94:3394-400.
  • Xu X, Zhang B, Liu K, Xing L, Liu D, Bai M. Measurements and analysis of the dielectric properties of aramid/epoxy composites based on free space method under stress conditions. Polym Test 2018;72:55-62.
  • Crone GAE, Rudge AW, Taylor GN. Design and performance of airborne radomes: a review. IEE Proc F Commun Radar Signal Process UK 1981;128(7):451.
  • Zhang H, Chen Y, Song W, Zheng J, Fan C, Shan Z, et al. Preparation of continuous glass fiber reinforced PEEK filaments and high-temperature performance for additive manufacturing. Composites Part B: Engineering 2025;292:112078.
  • Patri MS, Asit B. Chapter 29 - Glass fibre composites for aerospace and other applications. In: Technical Organic and Inorganic Fibres from Natural Resources. Woodhead Publishing in Materials; 2025, p. 795-834.
  • Xu T, Pan Y, Shen Z, Li Z, Zhou Y, Zhang G, et al. Real-time microwave transmittance variation of glass fiber composites subjected to laser irradiation. International Journal of Thermal Sciences 2024;206:109353.
  • Jin DH, Jang MS, Choi JH, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity. Composite Structures 2021;273:114279.
  • Choi I, Kim JG, Lee DG, Seo IS. Aramid/epoxy composites sandwich structures for low-observable radomes. Compos Sci Technol 2011;71:1632-8.
  • Li CL, Jiang DZ, Zeng JC, Ju S. The use of cutting carbon fiber fabric/epoxy composites as band-pass frequency selective surfaces. J Compos Mater 2014;48(18):2281-8.
  • Kim PC, Lee DG, Seo IS, Kim GH. Low-observable radomes composed of composite sandwich constructions and frequency selective surface. Compos Sci Technol 2008;68:2163-70.
  • Choi I, Lee D, Lee DG. Hybrid composite low-observable radome composed of E-glass/aramid/epoxy composite sandwich construction and frequency selective surface. Composite Structures 2014;117:98-104.
  • Kim PC, Lee DG, Seo S, Kim GH. Low-observable radomes composed of composite sandwich constructions and frequency selective surfaces. Composites Science and Technology 2008;68:2163–70.
  • Bradshaw PS. Signature management and structural materials, material and processing-move to the 90’s. In: Proceedings of SAMPE. Amsterdam; 1989, p. 187–96.
  • Domnich V, Reynaud S, Haber RA, Chhowalla M. Boron carbide: Structure, properties, and stability under stress. Journal of the American Ceramic Society 2011;94(11):3605–28.
  • Saracoglu G, Kiriş S, Çoban S, Karaaslan M, Depci T, Bayraktar E. Mechanical and radar absorption properties of sheep wool/epoxy composites. Aircraft Engineering and Aerospace Technology 2024;96(4).
  • Jin C, Wu Z, Zhang R, Qian X, Xu H, Che R. 1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. ACS App Mater Interfaces 2021.
  • Wang Y, Wu X, Zhang W, Luo C, Li J, Wang Y. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Materials Research Bulletin 2018;98:59-63.
There are 27 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Article
Authors

Fatma Bakal Gümüş 0000-0002-3386-2411

Submission Date March 24, 2025
Acceptance Date May 11, 2025
Publication Date January 27, 2026
Published in Issue Year 2026 Volume: 28 Issue: 82

Cite

Vancouver Bakal Gümüş F. Impact of Boron-Based Powder Doping on The Microwave Absorption Characteristics of Aramid/Fiber-Glass Hybrid Composites. DEUFMD. 2026;28(82):50-6.

This journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTMzMSwibm9uY2UiOiI2MTU1ODg1NGZlYzhkZTA1OThkNTU2NGFmYTQzYTc0YiJ9.O5b4Ex8bMlFv5797LL8VnE9YWS_X5880dfbmOp2-kc8