Research Article
BibTex RIS Cite

FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU

Year 2017, , 468 - 483, 01.05.2017
https://doi.org/10.21205/deufmd.2017195646

Abstract

Bu çalışmada ZnO ve CuO filmleri pratik ve ekonomik bir teknik
olan SILAR (Successive Ionic Layer Adsorption and Reaction)
yöntemi ile üretilmiştir. Filmlerin yapısal, optik, elipsometrik,
yüzeysel ve elektrik özellikleri sırası ile XRD, UV spektroskopisi,
Spektroskopik Elipsometre (SE), Atomik Kuvvet Mikroskobu
(AFM) ve dört-uç tekniği kullanılarak incelenmiştir. Filmlerin
yasak enerji aralıkları, optik metot kullanılarak 3,22 eV-1,72 eV
olarak hesaplanmıştır. Spektroskopik elipsometre (SE) tekniği ile
filmlerinin kalınlıkları ve bazı optik sabitleri (sönüm katsayısı ve
kırılma indisi) belirlenmiştir. Ayrıca, filmlerin üç boyutlu yüzey
görüntüleri incelenmiş ve ortalama yüzey pürüzlülük değerleri
38 nm and 60 nm olarak tespit edilmiştir. Filmlerin elektriksel
özdirenç değerleri ve iletim tipi sırasıyla dört-uç metodu ve sıcak
uç tekniği kullanılarak belirlenmiştir.

References

  • Terasako T., Murakami T., Hyodou A., Shirakata S. 2015. Structural and electrical properties of CuO films and n-ZnO/p-CuO prepared deposition based technique, Solar
  • Energy Materials & Solar Cells, Cilt. , 1016/j.solmat.2014.08.023 bath s. –79. DOI:
  • Fahrenbruch A.L. 1997. II-VI Compounds in Journal of Crystal s. Growth, Cilt. , 91. assited growth and DOI:
  • Hu X., Gao F., Xiang Y., Wu H., Zheng X., Jiang J., Li J., Yang H., Liu S. 2016.
  • Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition, Materials Letters, Cilt. 176, s. 282-284. DOI:10.1016/j.matlet.2016.04.055
  • Saadaldin N., Alsloum M.N., Hussain N. 2015. Preparing of Copper oxides
  • Thin Films by Chemical Bath Deposition (CBD) for Using in Environmental Application, Energy Procedia, Cilt. 74, s. 1459-146. DOI: 1016/j.egypro.2015.07.794
  • Mbulanga C. M., Urgessa Z. N., Tankio Djiokap S.R., Botha J.R., Duvenhage M. M., Swart H. C. 2016. Surface characterization of ZnO nanorods grown by chemical bath deposition,
  • Physica B: Condensed Matter, Cilt. , 1016/j.physb.2015.07.016 DOI:
  • Bedia A., Bedia F.Z., Aillerie M., Maloufi N., Benyoucef B. 2015.
  • Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell, Energy Procedia, Cilt. , 1016/j.egypro.2015.07.740 DOI:
  • Cachoncinlle C., Hebert C., Perrière J., Nistor M., Petit A., Millon E. 2015.
  • Random lasing of ZnO thin films grown by pulsed-lase deposition, Applied Surface Science, Cilt. 336, s. 107. 1016/j.apsusc.2014.09.186
  • Jayaraman V. K., Kuwabara Y. M., Álvarez A. M., Amador María de la luz O. 2016. Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering, Materials Letters, Cilt. 1016/j.matlet.2016.01.088 4. DOI:
  • Maleki-Ghaleh H., Shahzadeh M., Hoseinizadeh S. A., Arabi A., Aghaie E., Siadati M. H. 2016. Evaluation of the behavior of nano-structured ZnO films electrodepositon process, Materials
  • Letters, Cilt. 169, s. 140-143. DOI: 1016/j.matlet.2016.01.090 br
  • Armelao L., Barreca D., Bertapelle M., Bottaro G., Sada C., Tondello E. A sol-gel approach to nanophasic copper oxide thin films, Thin Solid Films, Cilt. 442, No. 1–2, s. 48-52. DOI: 10.1016/S0040- (03)00940-4 Gould R.D., Rahman M.S. 1981.
  • Power-law currents in some ZnO- Sn composite materials, Applied Physics, Cilt. 14, s. 79-89.DOI: 1088/0022-3727/14/1/011
  • Chen A., Long H., Li X., Li Y., Yang G., Lu P. 2009. Controlled growth and characteristics of single-phase
  • Cu2O and CuO films by pulsed laser deposition, Vacuum, Cilt. 83, s. –930. 1016/j.vacuum.2008.10.003 DOI:
  • Kumar A. K., Murugesan S., Suresh S., Raj S. P. 2013. Nanostructured
  • CuO thin films prepared through sputtering for solar selective absorbers, Journal of Solar Energy, Article ID 147270, s.1-6. DOI: 1155/2013/147270
  • Maruyama T. 1998. Copper Oxide
  • Thin Films Prepared from Copper Dipivaloylmethanate and Oxygen by Chemical Vapor Deposition, Japanese Physics Cilt. 37 (7), s. 4099-4102. DOI: 10.1143/JJAP.37.4099
  • Ray S. C. 2001. Preparation of copper oxide thin film by the solgel-like dip technique and study of their structural and optical properties, Solar Energy Materials
  • & Solar Cells, Cilt. 68, s. 307-312. DOI: (00)00364-0 Al-Kuhaili M. F.
  • Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), Vacuum, Cilt. 82, s. 623– 1016/j.vacuum.2007.10.004 DOI:
  • Muiva C. M., Maabong K., Moditswe C. 2016. CuO nanostructured thin films synthesised by chemical bath deposition deposited by successive ionic layer adsorption chemical techniques, Thin Solid Films, Cilt. , layers reaction and pyrolysis s. 54. DOI: 1016/j.tsf.2016.07.061
  • Thankalekshmi R. R., Rastogi A. C. Synthesis and properties of Zn(Cu-Mn)O semiconductor chemical technique, Journal of Analytical and Applied Pyrolysis, Cilt 107, s. 183- 1016/j.jaap.2014.02.020 by DOI:
  • Singh I., Kaur G., Bed R. K. 2011. CTAB characterization of nanocrystalline
  • CuO films by ultrasonic spray pyrolysis technique, Applied Surface Science, Cilt. 257 (22), s. 9554. 1016/j.apsusc.2011.06.061
  • Morales J., Sanchez L., Martin F., Romos-Barrado J.R., Sanchez M. Nanostructured CuO Thin Film Electrodes Prepared By Spray Pyrolysis: A Simple Method For Enhancing The Electrochemical Performance of CuO in Lithium Cells, Electrochimica Acta, Cilt. 49, s. 4589. DOI:10.1016/j.electacta.2004.05.0
  • Derin H., Kantarli K., 2002. Optical characterization of thin thermal oxide ellipsometry, Applied Physics A, Cilt. 1007/s003390100989 by , –395. DOI:
  • Papadimitropoulos G., Vourdas N., Vamvakas V. E., Davazoglou D. characterization of copper oxide thin films, Journal of Physics: Conference Series, Cilt. 10, s. 182– /10/1/045 and DOI: 1088/1742
  • Sasagawa M., Nosaka Y. 2002.
  • Electrochemical evaluation of the roles of chelating reagents in Cd ion adsorption on CdS surface for the adsorption and reaction (SILAR) deposition, Electroanalytical Chemistry, Cilt. , 1016/S0022-0728(02)01213-5 DOI:
  • Patil U. M., Gurav K. V., Joo Oh-Shim, Lokhande C. D. 2009. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method,
  • Journal of Alloys and Compounds, Cilt. 478, No. 1, s. 711–715. DOI:10.1016/j.jallcom.2008.11.160 Gokul B., Matheswaran P.,
  • Sathyamoorthy R. 2013. Influence of annealing on ohysical properties of CdO thin films prepared by
  • SILAR method, Journal of Materials Science & Technology, Cilt. 29, No. , s. 21. DOI: 1016/j.jmst.2012.11.015
  • Tatar D. Spray pyrolysis yöntemi ile farklı altlık sıcaklığında elde edilen Sn2O ve SnO2:F ince filmlerin bazı fiziksel sıcaklığının etkisinin araştırılması, Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 2015. altlık
  • Connoly R. 2003. Introduction to x- ray powder diffraction, Springer.
  • Cullity B. D. 2001. Stock S.R.
  • Elements of X-ray diffraction (3rd ed.), Prentice Hall. Joseph B., Gopchandran K.G., Thomas P.V., Koshy P., Vaidyan, V. K. 1999. A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical
  • Chemistry and Physics, Cilt. 58, s. DOI: (98)00257-0 Materials 77. 1016/S0254
  • Williamson G. K., Smallman R. E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Phil Mg., Cilt. 1, No.1, s. 134-34. DOI:10.1080/1478643560823807
  • Zhao Z., Morel D. L., Ferekides C. S. properties of thin-doped CdO films deposited metalorganic deposition, Thin Solid Films, Cilt. , 1016/S0040-6090(02)00344-9 DOI: DOI:
  • Vigil O., Vaillant L., Cruz F., Santana G., Morales-Acevedo A., Contreras- Puente G. 2000. Spray pyrolysis deposition of cadmium-zinc oxide thin films, Thin Solid Films, Cilt. 362, 1016/S0040-6090(99)01061-5 DOI:
  • Bayansal F., Şahin B., Yüksel M., Çetinkara H.A. 2013. SILAR-based growth o nanostructured CuO thin films containing saccharin as assistive,
  • Material Letters, Cilt. 98, s. 197- 1016/j.matlet.2013.02.030 DOI:
  • Akaltun Y. 2015. Effect of thickness on the structural and optical properties of CuO thin films grown by adsorption and reaction, Thin
  • Soldis Films, Cilt. 594, s. 30-34. DOI: 1016/j.tsf.2015.10.003 layer
  • Jayakrishnan R., Kurian A. S., Vrun G. N., Joseph M. R. 2016. Effect of vacuum photoconductivity of CuO thin films grown using sequential ionic layer adsorption
  • Chemistry and Physics, Cilt. 180, s. 155. DOI:10.1016/j.matchemphys.2016. 055 on the Material
  • Rajkumar P.V., Ravichandran K. , Baneto M. , Ravidhas C., Sakthivel B., Enhancement electrical properties of SILAR deposited ZnO thin films through fluorine annealing applications, Materials Science in Semiconductor Processing, Cilt. 35, s. 1016/j.mssp.2015.03.010 and doping and vacuum for photovoltaic –196. DOI:
  • Rahman M. A., Phillips M. R., That- Ton C. 2017. Efficient multi- coloured Li-doped ZnO thin films fabricated by spray pyrolysis,
  • Journal of Alloys and Compounds, Cilt. , 1016/j.jallcom.2016.08.242 DOI:
  • Dhruvashi, Shishodia P. K. 2016.
  • Effect of cobalt doping on ZnO thin films deposited by sol-gel method, Thin Solid Films, Cilt. 612, s. 55-60. DOI: 10.1016/j.tsf.2016.05.028
  • Chand P., Gaur A., Kumar Ash., Gaur U. K. 2014. Structural and optical study of Li doped CuO thin films on
  • Si (1 0 0) substrate deposited by pulsed laser deposition, Applied Surface Science, Cilt. 307, s. 280- 1016/j.apsusc.2014.04.027 DOI:
  • Wang F., Wang Y., Chen L., Wei B., Hao S. 2016. Effects of surface oxygen synthesized by plasma enhanced chemical
  • Material Letters, Cilt. 182, s. 52-54. DOI: 10.1016/j.matlet.2016.06.082
  • Baviskar K. P., Nikam P. R., Gargote S. S., Ennaoui A., Sankpal B. R. Controlled synthesis of ZnO nanostructures morphologies via simple solution chemistry, Journal of Alloys and Compounds, Cilt. 551, s. 233-242. DOI:10.1016/j.jallcom.2012.10.052

The Production of ZnO and CuO Films by SILAR Method andCharacterization for Use in Photovoltaic Solar Cells

Year 2017, , 468 - 483, 01.05.2017
https://doi.org/10.21205/deufmd.2017195646

Abstract

In this study; ZnO and CuO films were produced by SILAR (Successive Ionic Layer Adsorption and Reaction) technique which is a practically and economic. The films of structural, optical, ellipsometric, surface and electrical properties were determined by XRD diffactometer, UV spectrophotometer, Spectroscopic Ellipsomery (SE), Atomic Force Microscope (AFM), Four-Probe, respectively. The band gaps of films were calculated as 3.22 eV-1.72 eV using optic method. The thickness and some optic constants (extinction coefficient and refractive index) of films were investigated by SE. Also, the three dimensional surface images of films were obtained and the average surface roughness values were determined as 38 and 60 nm. The electrical resistivity values and conduction mechanism were investigated by using four-probe and hot-probe technique, respectively

References

  • Terasako T., Murakami T., Hyodou A., Shirakata S. 2015. Structural and electrical properties of CuO films and n-ZnO/p-CuO prepared deposition based technique, Solar
  • Energy Materials & Solar Cells, Cilt. , 1016/j.solmat.2014.08.023 bath s. –79. DOI:
  • Fahrenbruch A.L. 1997. II-VI Compounds in Journal of Crystal s. Growth, Cilt. , 91. assited growth and DOI:
  • Hu X., Gao F., Xiang Y., Wu H., Zheng X., Jiang J., Li J., Yang H., Liu S. 2016.
  • Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition, Materials Letters, Cilt. 176, s. 282-284. DOI:10.1016/j.matlet.2016.04.055
  • Saadaldin N., Alsloum M.N., Hussain N. 2015. Preparing of Copper oxides
  • Thin Films by Chemical Bath Deposition (CBD) for Using in Environmental Application, Energy Procedia, Cilt. 74, s. 1459-146. DOI: 1016/j.egypro.2015.07.794
  • Mbulanga C. M., Urgessa Z. N., Tankio Djiokap S.R., Botha J.R., Duvenhage M. M., Swart H. C. 2016. Surface characterization of ZnO nanorods grown by chemical bath deposition,
  • Physica B: Condensed Matter, Cilt. , 1016/j.physb.2015.07.016 DOI:
  • Bedia A., Bedia F.Z., Aillerie M., Maloufi N., Benyoucef B. 2015.
  • Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell, Energy Procedia, Cilt. , 1016/j.egypro.2015.07.740 DOI:
  • Cachoncinlle C., Hebert C., Perrière J., Nistor M., Petit A., Millon E. 2015.
  • Random lasing of ZnO thin films grown by pulsed-lase deposition, Applied Surface Science, Cilt. 336, s. 107. 1016/j.apsusc.2014.09.186
  • Jayaraman V. K., Kuwabara Y. M., Álvarez A. M., Amador María de la luz O. 2016. Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering, Materials Letters, Cilt. 1016/j.matlet.2016.01.088 4. DOI:
  • Maleki-Ghaleh H., Shahzadeh M., Hoseinizadeh S. A., Arabi A., Aghaie E., Siadati M. H. 2016. Evaluation of the behavior of nano-structured ZnO films electrodepositon process, Materials
  • Letters, Cilt. 169, s. 140-143. DOI: 1016/j.matlet.2016.01.090 br
  • Armelao L., Barreca D., Bertapelle M., Bottaro G., Sada C., Tondello E. A sol-gel approach to nanophasic copper oxide thin films, Thin Solid Films, Cilt. 442, No. 1–2, s. 48-52. DOI: 10.1016/S0040- (03)00940-4 Gould R.D., Rahman M.S. 1981.
  • Power-law currents in some ZnO- Sn composite materials, Applied Physics, Cilt. 14, s. 79-89.DOI: 1088/0022-3727/14/1/011
  • Chen A., Long H., Li X., Li Y., Yang G., Lu P. 2009. Controlled growth and characteristics of single-phase
  • Cu2O and CuO films by pulsed laser deposition, Vacuum, Cilt. 83, s. –930. 1016/j.vacuum.2008.10.003 DOI:
  • Kumar A. K., Murugesan S., Suresh S., Raj S. P. 2013. Nanostructured
  • CuO thin films prepared through sputtering for solar selective absorbers, Journal of Solar Energy, Article ID 147270, s.1-6. DOI: 1155/2013/147270
  • Maruyama T. 1998. Copper Oxide
  • Thin Films Prepared from Copper Dipivaloylmethanate and Oxygen by Chemical Vapor Deposition, Japanese Physics Cilt. 37 (7), s. 4099-4102. DOI: 10.1143/JJAP.37.4099
  • Ray S. C. 2001. Preparation of copper oxide thin film by the solgel-like dip technique and study of their structural and optical properties, Solar Energy Materials
  • & Solar Cells, Cilt. 68, s. 307-312. DOI: (00)00364-0 Al-Kuhaili M. F.
  • Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), Vacuum, Cilt. 82, s. 623– 1016/j.vacuum.2007.10.004 DOI:
  • Muiva C. M., Maabong K., Moditswe C. 2016. CuO nanostructured thin films synthesised by chemical bath deposition deposited by successive ionic layer adsorption chemical techniques, Thin Solid Films, Cilt. , layers reaction and pyrolysis s. 54. DOI: 1016/j.tsf.2016.07.061
  • Thankalekshmi R. R., Rastogi A. C. Synthesis and properties of Zn(Cu-Mn)O semiconductor chemical technique, Journal of Analytical and Applied Pyrolysis, Cilt 107, s. 183- 1016/j.jaap.2014.02.020 by DOI:
  • Singh I., Kaur G., Bed R. K. 2011. CTAB characterization of nanocrystalline
  • CuO films by ultrasonic spray pyrolysis technique, Applied Surface Science, Cilt. 257 (22), s. 9554. 1016/j.apsusc.2011.06.061
  • Morales J., Sanchez L., Martin F., Romos-Barrado J.R., Sanchez M. Nanostructured CuO Thin Film Electrodes Prepared By Spray Pyrolysis: A Simple Method For Enhancing The Electrochemical Performance of CuO in Lithium Cells, Electrochimica Acta, Cilt. 49, s. 4589. DOI:10.1016/j.electacta.2004.05.0
  • Derin H., Kantarli K., 2002. Optical characterization of thin thermal oxide ellipsometry, Applied Physics A, Cilt. 1007/s003390100989 by , –395. DOI:
  • Papadimitropoulos G., Vourdas N., Vamvakas V. E., Davazoglou D. characterization of copper oxide thin films, Journal of Physics: Conference Series, Cilt. 10, s. 182– /10/1/045 and DOI: 1088/1742
  • Sasagawa M., Nosaka Y. 2002.
  • Electrochemical evaluation of the roles of chelating reagents in Cd ion adsorption on CdS surface for the adsorption and reaction (SILAR) deposition, Electroanalytical Chemistry, Cilt. , 1016/S0022-0728(02)01213-5 DOI:
  • Patil U. M., Gurav K. V., Joo Oh-Shim, Lokhande C. D. 2009. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method,
  • Journal of Alloys and Compounds, Cilt. 478, No. 1, s. 711–715. DOI:10.1016/j.jallcom.2008.11.160 Gokul B., Matheswaran P.,
  • Sathyamoorthy R. 2013. Influence of annealing on ohysical properties of CdO thin films prepared by
  • SILAR method, Journal of Materials Science & Technology, Cilt. 29, No. , s. 21. DOI: 1016/j.jmst.2012.11.015
  • Tatar D. Spray pyrolysis yöntemi ile farklı altlık sıcaklığında elde edilen Sn2O ve SnO2:F ince filmlerin bazı fiziksel sıcaklığının etkisinin araştırılması, Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 2015. altlık
  • Connoly R. 2003. Introduction to x- ray powder diffraction, Springer.
  • Cullity B. D. 2001. Stock S.R.
  • Elements of X-ray diffraction (3rd ed.), Prentice Hall. Joseph B., Gopchandran K.G., Thomas P.V., Koshy P., Vaidyan, V. K. 1999. A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical
  • Chemistry and Physics, Cilt. 58, s. DOI: (98)00257-0 Materials 77. 1016/S0254
  • Williamson G. K., Smallman R. E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Phil Mg., Cilt. 1, No.1, s. 134-34. DOI:10.1080/1478643560823807
  • Zhao Z., Morel D. L., Ferekides C. S. properties of thin-doped CdO films deposited metalorganic deposition, Thin Solid Films, Cilt. , 1016/S0040-6090(02)00344-9 DOI: DOI:
  • Vigil O., Vaillant L., Cruz F., Santana G., Morales-Acevedo A., Contreras- Puente G. 2000. Spray pyrolysis deposition of cadmium-zinc oxide thin films, Thin Solid Films, Cilt. 362, 1016/S0040-6090(99)01061-5 DOI:
  • Bayansal F., Şahin B., Yüksel M., Çetinkara H.A. 2013. SILAR-based growth o nanostructured CuO thin films containing saccharin as assistive,
  • Material Letters, Cilt. 98, s. 197- 1016/j.matlet.2013.02.030 DOI:
  • Akaltun Y. 2015. Effect of thickness on the structural and optical properties of CuO thin films grown by adsorption and reaction, Thin
  • Soldis Films, Cilt. 594, s. 30-34. DOI: 1016/j.tsf.2015.10.003 layer
  • Jayakrishnan R., Kurian A. S., Vrun G. N., Joseph M. R. 2016. Effect of vacuum photoconductivity of CuO thin films grown using sequential ionic layer adsorption
  • Chemistry and Physics, Cilt. 180, s. 155. DOI:10.1016/j.matchemphys.2016. 055 on the Material
  • Rajkumar P.V., Ravichandran K. , Baneto M. , Ravidhas C., Sakthivel B., Enhancement electrical properties of SILAR deposited ZnO thin films through fluorine annealing applications, Materials Science in Semiconductor Processing, Cilt. 35, s. 1016/j.mssp.2015.03.010 and doping and vacuum for photovoltaic –196. DOI:
  • Rahman M. A., Phillips M. R., That- Ton C. 2017. Efficient multi- coloured Li-doped ZnO thin films fabricated by spray pyrolysis,
  • Journal of Alloys and Compounds, Cilt. , 1016/j.jallcom.2016.08.242 DOI:
  • Dhruvashi, Shishodia P. K. 2016.
  • Effect of cobalt doping on ZnO thin films deposited by sol-gel method, Thin Solid Films, Cilt. 612, s. 55-60. DOI: 10.1016/j.tsf.2016.05.028
  • Chand P., Gaur A., Kumar Ash., Gaur U. K. 2014. Structural and optical study of Li doped CuO thin films on
  • Si (1 0 0) substrate deposited by pulsed laser deposition, Applied Surface Science, Cilt. 307, s. 280- 1016/j.apsusc.2014.04.027 DOI:
  • Wang F., Wang Y., Chen L., Wei B., Hao S. 2016. Effects of surface oxygen synthesized by plasma enhanced chemical
  • Material Letters, Cilt. 182, s. 52-54. DOI: 10.1016/j.matlet.2016.06.082
  • Baviskar K. P., Nikam P. R., Gargote S. S., Ennaoui A., Sankpal B. R. Controlled synthesis of ZnO nanostructures morphologies via simple solution chemistry, Journal of Alloys and Compounds, Cilt. 551, s. 233-242. DOI:10.1016/j.jallcom.2012.10.052
There are 64 citations in total.

Details

Primary Language Turkish
Other ID JA92CR95GZ
Journal Section Research Article
Authors

Olcay Gençyılmaz

Turan Taşköprü This is me

Publication Date May 1, 2017
Published in Issue Year 2017

Cite

APA Gençyılmaz, O., & Taşköprü, T. (2017). FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(56), 468-483. https://doi.org/10.21205/deufmd.2017195646
AMA Gençyılmaz O, Taşköprü T. FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU. DEUFMD. May 2017;19(56):468-483. doi:10.21205/deufmd.2017195646
Chicago Gençyılmaz, Olcay, and Turan Taşköprü. “FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 56 (May 2017): 468-83. https://doi.org/10.21205/deufmd.2017195646.
EndNote Gençyılmaz O, Taşköprü T (May 1, 2017) FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 56 468–483.
IEEE O. Gençyılmaz and T. Taşköprü, “FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU”, DEUFMD, vol. 19, no. 56, pp. 468–483, 2017, doi: 10.21205/deufmd.2017195646.
ISNAD Gençyılmaz, Olcay - Taşköprü, Turan. “FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/56 (May 2017), 468-483. https://doi.org/10.21205/deufmd.2017195646.
JAMA Gençyılmaz O, Taşköprü T. FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU. DEUFMD. 2017;19:468–483.
MLA Gençyılmaz, Olcay and Turan Taşköprü. “FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 56, 2017, pp. 468-83, doi:10.21205/deufmd.2017195646.
Vancouver Gençyılmaz O, Taşköprü T. FOTOVOLTAİK GÜNEŞ PİLLERİNDE KULLANILAN ZNO VE CUO FİLMLERİNİN SILAR YÖNTEMİ İLE ÜRETİLMESİ VE KARAKTERİZASYONU. DEUFMD. 2017;19(56):468-83.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.