BibTex RIS Cite

INVESTIGATION OF OPTIMALITY CONDITIONS OF THE TRANSPORTATION PROBLEM

Year 2000, Volume: 2 Issue: 2, 107 - 112, 01.05.2000
https://izlik.org/JA82NZ25ME

Abstract

In this study, optimality conditions of the transportation problem with m origins and n
destinations have been investigated by using properties of Lagrange functions and Hessian
matrix. It is shown that the problem and its reduced cases have common algebraic
characterizations.

References

  • Bazaraa M.S., Jarvis J.J., Sherali H.D., (1990): “Linear Programming and Network Flows”, Canada, John Wiley and Sons Inc.
  • Bulut H., (1982): “Bir Ağ Akışı Probleminin Genelleştirilmiş Ters Matrislerle İncelenmesi”, İzmir, Doçentlik Tezi.
  • Bulut H., (1991): “Algebraic Characterizations of the Singular Value Decompositions in the Transportation Problem”, J. Math. Anal. Appl., 154 , 13-21.
  • Bulut H., (1991): “Further Results on the Spectral Decomposition of an Incidence Matrix”, J.Math. Anal. Appl., 158, 466-475.
  • Bulut H., Bulut S.A., (1993): “Spectral Decompositions and Generalized Inverses in a Circularization Network Flow Problem”, J.Math. Anal. Appl., 174, 390-402.
  • Carre B., (1979): “Graph and Networks”, New York, Oxford University Press.
  • Ford L.R., Fulkerson D.R., (1962): “Flows in Networks”, New Jersey, Princeton University Press.
  • Hu T. C., (1970): “Integer Programming and Network Flows”, London, Addison-Wesley.
  • Marlow W.H., (1978): “Mathematics for Operations Research”, New York, John Wiley and Sons Inc.
  • Pyle L.D., (1972): “The Generalized Inverse in Linear Programming Basic Structure”, SIAM J. Appl. Math., 22, pp.335-355.
  • Simonnard M., (1966): “Linear Programming”, New Jersey, Prentice Hall.

DAĞITIM PROBLEMİNİN OPTİMALLİK KOŞULLARININ İNCELENMESİ

Year 2000, Volume: 2 Issue: 2, 107 - 112, 01.05.2000
https://izlik.org/JA82NZ25ME

Abstract

Bu çalışmada, m çıkış ve n varışlı bir dağıtım probleminin optimallik koşulları, Lagrange
fonksiyonu ve Hessian matrisinin özellikleri kullanılarak incelenmiştir. Problemin ve
indirgenmiş halinin aynı cebirsel özelliklere sahip olduğu görülmüştür.

References

  • Bazaraa M.S., Jarvis J.J., Sherali H.D., (1990): “Linear Programming and Network Flows”, Canada, John Wiley and Sons Inc.
  • Bulut H., (1982): “Bir Ağ Akışı Probleminin Genelleştirilmiş Ters Matrislerle İncelenmesi”, İzmir, Doçentlik Tezi.
  • Bulut H., (1991): “Algebraic Characterizations of the Singular Value Decompositions in the Transportation Problem”, J. Math. Anal. Appl., 154 , 13-21.
  • Bulut H., (1991): “Further Results on the Spectral Decomposition of an Incidence Matrix”, J.Math. Anal. Appl., 158, 466-475.
  • Bulut H., Bulut S.A., (1993): “Spectral Decompositions and Generalized Inverses in a Circularization Network Flow Problem”, J.Math. Anal. Appl., 174, 390-402.
  • Carre B., (1979): “Graph and Networks”, New York, Oxford University Press.
  • Ford L.R., Fulkerson D.R., (1962): “Flows in Networks”, New Jersey, Princeton University Press.
  • Hu T. C., (1970): “Integer Programming and Network Flows”, London, Addison-Wesley.
  • Marlow W.H., (1978): “Mathematics for Operations Research”, New York, John Wiley and Sons Inc.
  • Pyle L.D., (1972): “The Generalized Inverse in Linear Programming Basic Structure”, SIAM J. Appl. Math., 22, pp.335-355.
  • Simonnard M., (1966): “Linear Programming”, New Jersey, Prentice Hall.
There are 11 citations in total.

Details

Other ID JA34NJ55TC
Authors

Süleyman Şafak This is me

Publication Date May 1, 2000
IZ https://izlik.org/JA82NZ25ME
Published in Issue Year 2000 Volume: 2 Issue: 2

Cite

Vancouver 1.Şafak S. DAĞITIM PROBLEMİNİN OPTİMALLİK KOŞULLARININ İNCELENMESİ. DEUFMD [Internet]. 2000 May 1;2(2):107-12. Available from: https://izlik.org/JA82NZ25ME

This journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTMzMSwibm9uY2UiOiI2MTU1ODg1NGZlYzhkZTA1OThkNTU2NGFmYTQzYTc0YiJ9.O5b4Ex8bMlFv5797LL8VnE9YWS_X5880dfbmOp2-kc8