Research Article
BibTex RIS Cite

Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması

Year 2021, , 937 - 950, 15.09.2021
https://doi.org/10.21205/deufmd.2021236921

Abstract

Kıkırdak doku hasarlarının onarılmasındaki mevcut tedaviler, kıkırdağın kendi kendini iyileştirme kapasitesinin düşük olması nedeni ile sınırlıdır. Son yıllarda doku mühendisliği, kıkırdak rejenerasyonu için umut verici bir yaklaşım olarak önerilmektedir. Bu çalışmada, kıkırdak doku hasarları için lif kabağı ile güçlendirilmiş ipek fibroin/kitosan hidrojeller hazırlanmıştır. Biyouyumlu, biyolojik olarak parçalanabilir ipek fibroin ve kitosan polimerleri, doğal ve toksik olmayan bir çapraz bağlama maddesi olan genipin ile çapraz bağlanmıştır. Taramalı elektron mikroskobu (SEM) ve Fourier Dönüşümü Kızılötesi Spektroskopisi (FTIR) sırasıyla morfoloji ve kimyasal yapı karakterizasyonu için kullanılmıştır. Viskoelastik özelliklerin belirlenmesi için dinamik mekanik analiz cihazı (DMA) kullanılırken, iskelelerin mekanik özelliklerini incelemek için basma testi kullanılmıştır. Doku iskelelerinin sitotoksisitesi, hücre canlılığı ve çoğalması tavşan mezenkimal kök hücreleri kullanılarak LDH, WST ve kollajen testi ile araştırılmıştır. Üretilen hidrojel kompozit doku iskelelerinin tamamının birbirine bağlı mikro gözenekli bir yapıya sahip olduğu ve lif kabaklarının yapıya iyi entegre olduğu görülmektedir. Ağırlıkça %0,3 genipin ile çapraz bağlanan hidrojel kompozit doku iskelesi (L-CSG3), eklem kıkırdağıyla karşılaştırılabilir su içeriği (94,4±% 0,2), tan δ (1 Hz'de 0,18) ve basma modülü (5,5 MPa) değerleri göstermiştir. Ayrıca, in-vitro test sonuçlarına göre, bu hidrojel kompozit doku iskelesi, tavşan mezenkimal kök hücrelerinde gelişmiş canlılık göstermiştir. Sonuç olarak, bu hidrojel kompozit doku iskelesi, kıkırdak dokusu rejenerasyonu için umut vaat ettiği söylenebilir.

Supporting Institution

DEÜ BAP

Project Number

2016.KB.MLT.002

Thanks

Bu çalışma Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri tarafından, 2016.KB.MLT.002 proje numarası ile desteklenmiştir. Yazarlar akım sitometrik analizler için İzmir Biyotıp ve Genom Merkezi’ne, dinamik mekanik analiz için Prof. Dr. Metin TANOĞLU ve Mehmet Deniz GÜNEŞ'e teşekkür etmektedirler.

References

  • [1] Ahmadi, F., Giti, R., Mohammadi-Samani, S., Mohammadi, F. 2017. Biodegradable Scaffolds for Cartilage Tissue Engineering. Galen Medical Journal, Cilt. 6 (2), s. 70-80. DOI: 10.22086/GMJ.V6I2.696
  • [2] Armiento, A., Stoddart, M., Alini, M., Eglin, D. 2017. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia, Cilt. 65, s. 1-20. DOI: 10.1016/j.actbio.2017.11.021
  • [3] Seol, Y.J., Park, J.Y., Jeong, W., Kim, T.H., Kim, S.Y., Cho, D.W. 2015. Development of Hybrid Scaffolds Using Ceramic and Hydrogel for Articular Cartilage Tissue Regeneration. Journal of Biomedical Materials Research Part A, Cilt. 103 (4), s. 1404-1413. DOI: 10.1002/jbm.a.35276
  • [4] Saladino, S., Di Leonardo, E., Salamone, M., Mercuri, D., Segatti, F., Ghersi, G. 2014. Formulation of Different Chitosan Hydrogels for Cartilage Tissue Repair. Chemical Engineering Transactions, Cilt. 38, s. 505-510. DOI: 10.3303/CET1438085
  • [5] O'brien, F.J. 2011. Biomaterials & Scaffolds for Tissue Engineering. Materials Today, Cilt. 14 (3) s. 88-95. DOI: 10.1016/S1369-7021(11)70058-X
  • [6] Puppi, D., Chiellini, F., Piras, A., Chiellini, E. 2010. Polymeric Materials for Bone and Cartilage Repair. Progress in Polymer Science, Cilt. 35 (4), s. 403-440. DOI: 10.1016/j.progpolymsci.2010.01.006
  • [7] Yang, J., Zhang, Y.S., Yue, K., Khademhosseini, A. 2017. Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering. Acta Biomaterialia, Cilt. 57, s. 1-25. DOI: 10.1016/j.actbio.2017.01.036
  • [8] Vepari, C., Kaplan, D.L. 2007. Silk as a Biomaterial. Progress in Polymer Science, Cilt. 32 (8), s. 991-1007. DOI: 10.1016/j.progpolymsci.2007.05.013
  • [9] Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M.A., Bonakdar, S. 2013. Enhanced Mechanical Properties of Thermosensitive Chitosan Hydrogel by Silk Fibers for Cartilage Tissue Engineering. Materials Science and Engineering: C, Cilt. 33 (8), s. 4786-4794. DOI: 10.1016/j.msec.2013.07.043
  • [10] Bas, O., De-Juan-Pardo, E.M., Meinert, C., D’Angella, D., Baldwin, J.G., Bray, L.J., Wellard, R.M., Kollmannsberger, S., Rank, E., Werner, C. 2017. Biofabricated Soft Network Composites for Cartilage Tissue Engineering. Biofabrication, Cilt. 9 (2), s. 025014. DOI: 1088/1758-5090/aa6b15
  • [11] 11. Butcher, A.L., Offeddu, G.S., Oyen, M.L. 2014. Nanofibrous Hydrogel Composites as Mechanically Robust Tissue Engineering Scaffolds. Trends in Biotechnology, Cilt. 32 (11), s. 564-570. DOI: 10.1016/j.tibtech.2014.09.001
  • [12] Cecen, B., Kozaci, L.D., Yuksel, M., Ustun, O., Ergur, B.U., Havitcioglu, H. 2016. Biocompatibility and Biomechanical Characteristics of Loofah Based Scaffolds Combined with Hydroxyapatite, Cellulose, Poly-l-lactic acid with Chondrocyte-like Cells. Materials Science and Engineering: C, Cilt. 69, s. 437-446. DOI: 10.1016/j.msec.2016.07.007
  • [13] Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., Sadiku, R. 2017. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Materials Science and Engineering: C, Cilt. 79, s. 958-971. DOI: 10.1016/j.msec.2017.05.096
  • [14] Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M.G., Demitri, C. 2017. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science, Cilt. 2017, s. 1-8. DOI: /10.1155/2017/8410750
  • [15] Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., Zhang, Y. 2015. Genipin-crosslinked Electrospun Chitosan Nanofibers: Determination of Crosslinking Conditions and Evaluation of Cytocompatibility. Carbohydrate Polymers, Cilt. 130, s. 166-174. DOI: 10.1016/j.carbpol.2015.05.039
  • [16] Delgadillo-Armendariz, N.L., Rangel-Vazquez, N.A., Marquez-Brazon, E.A., Gascue, R-D. 2014. Interactions of Chitosan/Genipin Hydrogels During Drug Delivery: A QSPR Approach. Química Nova, Cilt. 37 (9), s. 1503-1509. DOI: 10.5935/0100-4042.20140243
  • [17] Abdelwahab, O. 2014. Assessment of Raw Luffa as a Natural Hollow Oleophilic Fibrous Sorbent for Oil Spill Cleanup. Alexandria Engineering Journal, Cilt. 53 (1), s. 213-218. DOI: 10.1016/j.aej.2013.11.001
  • [18] Botaro, V.R., Novack, K.M., Siqueira, E.J. 2012. Dynamic Mechanical Behavior of Vinylester Matrix Composites Reinforced by Luffa Cylindrica Modified Fibers. Journal of Applied Polymer Science, Cilt. 124 (3), s.1967-1975. DOI: 10.1002/app.35019
  • [19] Vacanti, C. 2008. Musculoskeletal Tissue Regeneration: Biological Materials and Methods. Humana Press, 670s.
  • [20] Yan, L.P., Wang, Y.J., Ren, L., Wu, G., Caridade, S.G., Fan, J.B., Wang, L.Y., Ji, P.H., Oliveira, J.M., Oliveira, J.T. 2010. Genipin‐cross‐linked Collagen/Chitosan Biomimetic Scaffolds for Articular Cartilage Tissue Engineering Applications. Journal of Biomedical Materials Research Part A, Cilt. 95 (2), s. 465-475. DOI: 10.1002/jbm.a.32869
  • [21] Sophia Fox, A.J., Bedi, A., Rodeo, S.A. 2009. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, Cilt. 1 (6), s. 461-468. DOI: 10.1177/1941738109350438
  • [22] Yodmuang, S., McNamara, S.L., Nover, A.B., Mandal, B.B., Agarwal, M., Kelly, T-AN., Chao, P-hG., Hung, C., Kaplan, D.L., Vunjak-Novakovic, G. 2015. Silk Microfiber-reinforced Silk Hydrogel Composites for Functional Cartilage Tissue Repair. Acta Biomaterialia, Cilt. 11, s. 27-36. DOI: 10.1016/j.actbio.2014.09.032
  • [23] Lee, C-T., Kung, P-H., Lee, Y-D. 2005. Preparation of Poly (vinyl alcohol)-chondroitin Sulfate Hydrogel as Matrices in Tissue Engineering. Carbohydrate Polymers, 61 (3), s. 348-354. DOI: 10.1016/j.carbpol.2005.06.018
  • [24] Chen, K., Zhang, D., Yang, X., Zhang, X., Wang, Q. 2016. Research on Viscoelastic Behavior and Mechanism of Hydrogel Grafted with UHMWPE. Soft Materials, 14 (4), s. 244-252. DOI: 10.1080/1539445X.2016.1195408
  • [25] Temple, D.K., Cederlund, A.A., Lawless, B.M., Aspden, R.M., Espino, D.M. 2016. Viscoelastic Properties of Human and Bovine Articular Cartilage: A Comparison of Frequency-Dependent Trends. BMC Musculoskeletal Disorders, Cilt. 17 (1), s. 419. DOI: 10.1186/s12891-016-1279-1
  • [26] Bartnikowski, M., Wellard, R., Woodruff, M., Klein, T. 2015. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. Polymers, Cilt. 7 (12), s. 2650-2669. DOI: 10.3390/polym7121539
  • [27] Dinescu, S., Gălăţeanu, B., Albu, M., Lungu, A., Radu, E., Hermenean, A., Costache, M. 2013. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds İmproved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration. BioMed Research International 2013. DOI: 10.1155/2013/598056
  • [28] Kumar, P., Nagarajan, A., Uchil, P.D. 2018. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protocols, Cilt. 2018 (6), s. prot095497. DOI:10.1101/pdb.prot095497
  • [29] Mabrouk, M., Beherei, H.H., Das, D.B. 2020. Recent Progress in the Fabrication Techniques of 3D Scaffolds for Tissue Engineering. Materials Science and Engineering: C, Cilt. 110, s. 110716. DOI: 10.1016/j.msec.2020.110716
  • [30] Chen, J-L., Duan, L., Zhu, W., Xiong, J., Wang, D. 2014. Extracellular Matrix Production In Vitro in Cartilage Tissue Engineering. Journal of Translational Medicine, Cilt. 12 (1), s. 88. DOI:10.1186/1479-5876-12-88
  • [31] Francis, S.L., Di Bella, C., Wallace, G.G., Choong, P.F. 2018. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Frontiers in Surgery, Cilt. 5, s. 70. DOI: 10.3389/fsurg.2018.00070
  • [32] 32. Irawan, V., Sung, T-C., Higuchi, A., Ikoma, T. 2018. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Engineering and Regenerative Medicine, Cilt. 15 (6), s. 673-697. DOI: 10.1007/s13770-018-0135-9

Investigation of the Loofah Reinforced Chitosan-Silk Hydrogel Composite Scaffolds for Cartilage Tissue Regeneration

Year 2021, , 937 - 950, 15.09.2021
https://doi.org/10.21205/deufmd.2021236921

Abstract

Current therapies for the treatment of cartilage defects are limited due to the low self-healing capacity of cartilage. In recent years, tissue engineering has been proposed as a promising approach for cartilage regeneration. In this study, silk fibroin/chitosan hydrogels reinforced with luffa cylindrica were prepared for cartilage tissue defects. Biocompatible, biodegradable silk fibroin and chitosan polymers were cross-linked with genipin which is a natural and nontoxic cross-linking agent. Scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used for the characterization of the morphology and chemical structures, respectively. Dynamic mechanical analysis was used to determine the viscoelastic properties, while compression test was applied to examine the mechanical properties of the scaffolds. The cytotoxicity, viability and proliferation of rabbit mesenchymal stem cells on the scaffolds were investigated by LDH, WST, and collagen assay. All of the produced hydrogel composite scaffolds had an interconnected microporous structure and loofah nanofibers were well-integrated within the structure. The hydrogel composite scaffold cross-linked with 0.3% wt. genipin (L-CSG3) demonstrated comparable water content (94.4±0.2%), tan δ (0,18 at 1 Hz) and compressive modulus (5,5 MPa) values to that of articular cartilage. Besides, based on the in-vitro test results, this hydrogel composite scaffold showed enhanced viability on rabbit mesenchymal stem cells. Consequently, this hydrogel composite scaffold presented a great promise for cartilage tissue regeneration.

Project Number

2016.KB.MLT.002

References

  • [1] Ahmadi, F., Giti, R., Mohammadi-Samani, S., Mohammadi, F. 2017. Biodegradable Scaffolds for Cartilage Tissue Engineering. Galen Medical Journal, Cilt. 6 (2), s. 70-80. DOI: 10.22086/GMJ.V6I2.696
  • [2] Armiento, A., Stoddart, M., Alini, M., Eglin, D. 2017. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia, Cilt. 65, s. 1-20. DOI: 10.1016/j.actbio.2017.11.021
  • [3] Seol, Y.J., Park, J.Y., Jeong, W., Kim, T.H., Kim, S.Y., Cho, D.W. 2015. Development of Hybrid Scaffolds Using Ceramic and Hydrogel for Articular Cartilage Tissue Regeneration. Journal of Biomedical Materials Research Part A, Cilt. 103 (4), s. 1404-1413. DOI: 10.1002/jbm.a.35276
  • [4] Saladino, S., Di Leonardo, E., Salamone, M., Mercuri, D., Segatti, F., Ghersi, G. 2014. Formulation of Different Chitosan Hydrogels for Cartilage Tissue Repair. Chemical Engineering Transactions, Cilt. 38, s. 505-510. DOI: 10.3303/CET1438085
  • [5] O'brien, F.J. 2011. Biomaterials & Scaffolds for Tissue Engineering. Materials Today, Cilt. 14 (3) s. 88-95. DOI: 10.1016/S1369-7021(11)70058-X
  • [6] Puppi, D., Chiellini, F., Piras, A., Chiellini, E. 2010. Polymeric Materials for Bone and Cartilage Repair. Progress in Polymer Science, Cilt. 35 (4), s. 403-440. DOI: 10.1016/j.progpolymsci.2010.01.006
  • [7] Yang, J., Zhang, Y.S., Yue, K., Khademhosseini, A. 2017. Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering. Acta Biomaterialia, Cilt. 57, s. 1-25. DOI: 10.1016/j.actbio.2017.01.036
  • [8] Vepari, C., Kaplan, D.L. 2007. Silk as a Biomaterial. Progress in Polymer Science, Cilt. 32 (8), s. 991-1007. DOI: 10.1016/j.progpolymsci.2007.05.013
  • [9] Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M.A., Bonakdar, S. 2013. Enhanced Mechanical Properties of Thermosensitive Chitosan Hydrogel by Silk Fibers for Cartilage Tissue Engineering. Materials Science and Engineering: C, Cilt. 33 (8), s. 4786-4794. DOI: 10.1016/j.msec.2013.07.043
  • [10] Bas, O., De-Juan-Pardo, E.M., Meinert, C., D’Angella, D., Baldwin, J.G., Bray, L.J., Wellard, R.M., Kollmannsberger, S., Rank, E., Werner, C. 2017. Biofabricated Soft Network Composites for Cartilage Tissue Engineering. Biofabrication, Cilt. 9 (2), s. 025014. DOI: 1088/1758-5090/aa6b15
  • [11] 11. Butcher, A.L., Offeddu, G.S., Oyen, M.L. 2014. Nanofibrous Hydrogel Composites as Mechanically Robust Tissue Engineering Scaffolds. Trends in Biotechnology, Cilt. 32 (11), s. 564-570. DOI: 10.1016/j.tibtech.2014.09.001
  • [12] Cecen, B., Kozaci, L.D., Yuksel, M., Ustun, O., Ergur, B.U., Havitcioglu, H. 2016. Biocompatibility and Biomechanical Characteristics of Loofah Based Scaffolds Combined with Hydroxyapatite, Cellulose, Poly-l-lactic acid with Chondrocyte-like Cells. Materials Science and Engineering: C, Cilt. 69, s. 437-446. DOI: 10.1016/j.msec.2016.07.007
  • [13] Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., Sadiku, R. 2017. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Materials Science and Engineering: C, Cilt. 79, s. 958-971. DOI: 10.1016/j.msec.2017.05.096
  • [14] Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M.G., Demitri, C. 2017. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science, Cilt. 2017, s. 1-8. DOI: /10.1155/2017/8410750
  • [15] Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., Zhang, Y. 2015. Genipin-crosslinked Electrospun Chitosan Nanofibers: Determination of Crosslinking Conditions and Evaluation of Cytocompatibility. Carbohydrate Polymers, Cilt. 130, s. 166-174. DOI: 10.1016/j.carbpol.2015.05.039
  • [16] Delgadillo-Armendariz, N.L., Rangel-Vazquez, N.A., Marquez-Brazon, E.A., Gascue, R-D. 2014. Interactions of Chitosan/Genipin Hydrogels During Drug Delivery: A QSPR Approach. Química Nova, Cilt. 37 (9), s. 1503-1509. DOI: 10.5935/0100-4042.20140243
  • [17] Abdelwahab, O. 2014. Assessment of Raw Luffa as a Natural Hollow Oleophilic Fibrous Sorbent for Oil Spill Cleanup. Alexandria Engineering Journal, Cilt. 53 (1), s. 213-218. DOI: 10.1016/j.aej.2013.11.001
  • [18] Botaro, V.R., Novack, K.M., Siqueira, E.J. 2012. Dynamic Mechanical Behavior of Vinylester Matrix Composites Reinforced by Luffa Cylindrica Modified Fibers. Journal of Applied Polymer Science, Cilt. 124 (3), s.1967-1975. DOI: 10.1002/app.35019
  • [19] Vacanti, C. 2008. Musculoskeletal Tissue Regeneration: Biological Materials and Methods. Humana Press, 670s.
  • [20] Yan, L.P., Wang, Y.J., Ren, L., Wu, G., Caridade, S.G., Fan, J.B., Wang, L.Y., Ji, P.H., Oliveira, J.M., Oliveira, J.T. 2010. Genipin‐cross‐linked Collagen/Chitosan Biomimetic Scaffolds for Articular Cartilage Tissue Engineering Applications. Journal of Biomedical Materials Research Part A, Cilt. 95 (2), s. 465-475. DOI: 10.1002/jbm.a.32869
  • [21] Sophia Fox, A.J., Bedi, A., Rodeo, S.A. 2009. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, Cilt. 1 (6), s. 461-468. DOI: 10.1177/1941738109350438
  • [22] Yodmuang, S., McNamara, S.L., Nover, A.B., Mandal, B.B., Agarwal, M., Kelly, T-AN., Chao, P-hG., Hung, C., Kaplan, D.L., Vunjak-Novakovic, G. 2015. Silk Microfiber-reinforced Silk Hydrogel Composites for Functional Cartilage Tissue Repair. Acta Biomaterialia, Cilt. 11, s. 27-36. DOI: 10.1016/j.actbio.2014.09.032
  • [23] Lee, C-T., Kung, P-H., Lee, Y-D. 2005. Preparation of Poly (vinyl alcohol)-chondroitin Sulfate Hydrogel as Matrices in Tissue Engineering. Carbohydrate Polymers, 61 (3), s. 348-354. DOI: 10.1016/j.carbpol.2005.06.018
  • [24] Chen, K., Zhang, D., Yang, X., Zhang, X., Wang, Q. 2016. Research on Viscoelastic Behavior and Mechanism of Hydrogel Grafted with UHMWPE. Soft Materials, 14 (4), s. 244-252. DOI: 10.1080/1539445X.2016.1195408
  • [25] Temple, D.K., Cederlund, A.A., Lawless, B.M., Aspden, R.M., Espino, D.M. 2016. Viscoelastic Properties of Human and Bovine Articular Cartilage: A Comparison of Frequency-Dependent Trends. BMC Musculoskeletal Disorders, Cilt. 17 (1), s. 419. DOI: 10.1186/s12891-016-1279-1
  • [26] Bartnikowski, M., Wellard, R., Woodruff, M., Klein, T. 2015. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. Polymers, Cilt. 7 (12), s. 2650-2669. DOI: 10.3390/polym7121539
  • [27] Dinescu, S., Gălăţeanu, B., Albu, M., Lungu, A., Radu, E., Hermenean, A., Costache, M. 2013. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds İmproved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration. BioMed Research International 2013. DOI: 10.1155/2013/598056
  • [28] Kumar, P., Nagarajan, A., Uchil, P.D. 2018. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protocols, Cilt. 2018 (6), s. prot095497. DOI:10.1101/pdb.prot095497
  • [29] Mabrouk, M., Beherei, H.H., Das, D.B. 2020. Recent Progress in the Fabrication Techniques of 3D Scaffolds for Tissue Engineering. Materials Science and Engineering: C, Cilt. 110, s. 110716. DOI: 10.1016/j.msec.2020.110716
  • [30] Chen, J-L., Duan, L., Zhu, W., Xiong, J., Wang, D. 2014. Extracellular Matrix Production In Vitro in Cartilage Tissue Engineering. Journal of Translational Medicine, Cilt. 12 (1), s. 88. DOI:10.1186/1479-5876-12-88
  • [31] Francis, S.L., Di Bella, C., Wallace, G.G., Choong, P.F. 2018. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Frontiers in Surgery, Cilt. 5, s. 70. DOI: 10.3389/fsurg.2018.00070
  • [32] 32. Irawan, V., Sung, T-C., Higuchi, A., Ikoma, T. 2018. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Engineering and Regenerative Medicine, Cilt. 15 (6), s. 673-697. DOI: 10.1007/s13770-018-0135-9
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Oylum Çolpankan Güneş 0000-0002-2440-3256

İbrahim Özer This is me 0000-0003-4354-2785

Aylin Kara This is me 0000-0001-8302-913X

Aylin Ziylan 0000-0003-4137-5696

Hasan Havıtçıoğlu This is me 0000-0001-8169-3539

Project Number 2016.KB.MLT.002
Publication Date September 15, 2021
Published in Issue Year 2021

Cite

APA Çolpankan Güneş, O., Özer, İ., Kara, A., Ziylan, A., et al. (2021). Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 937-950. https://doi.org/10.21205/deufmd.2021236921
AMA Çolpankan Güneş O, Özer İ, Kara A, Ziylan A, Havıtçıoğlu H. Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması. DEUFMD. September 2021;23(69):937-950. doi:10.21205/deufmd.2021236921
Chicago Çolpankan Güneş, Oylum, İbrahim Özer, Aylin Kara, Aylin Ziylan, and Hasan Havıtçıoğlu. “Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 937-50. https://doi.org/10.21205/deufmd.2021236921.
EndNote Çolpankan Güneş O, Özer İ, Kara A, Ziylan A, Havıtçıoğlu H (September 1, 2021) Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 937–950.
IEEE O. Çolpankan Güneş, İ. Özer, A. Kara, A. Ziylan, and H. Havıtçıoğlu, “Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması”, DEUFMD, vol. 23, no. 69, pp. 937–950, 2021, doi: 10.21205/deufmd.2021236921.
ISNAD Çolpankan Güneş, Oylum et al. “Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 937-950. https://doi.org/10.21205/deufmd.2021236921.
JAMA Çolpankan Güneş O, Özer İ, Kara A, Ziylan A, Havıtçıoğlu H. Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması. DEUFMD. 2021;23:937–950.
MLA Çolpankan Güneş, Oylum et al. “Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 937-50, doi:10.21205/deufmd.2021236921.
Vancouver Çolpankan Güneş O, Özer İ, Kara A, Ziylan A, Havıtçıoğlu H. Lif Kabağı Takviye Edilmiş Kitosan-İpek Hidrojel Kompozit Doku İskelelerinin Kıkırdak Doku Hasarı Tedavisinde Kullanımının Araştırılması. DEUFMD. 2021;23(69):937-50.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.