Research Article
BibTex RIS Cite

Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection

Year 2021, , 787 - 801, 15.09.2021
https://doi.org/10.21205/deufmd.2021236908

Abstract

Formation and contamination of malicious microorganisms and viruses remain to be major problem of water resources. This is mostly due to the fact that, groundwater, which constitutes a large share of available fresh water content, is prone to contamination from urban and industrial wastes. In this work, electrochemical treatment is considered as a disinfection mechanism. The literature presents several cases of individual of electrochemical disinfection experiments. In this particular work, we aim to focus on the comparative disinfection efficiency of Boron-doped diamond electrodes, Iridium metal-oxide electrodes and Graphite plate electrodes at various electrochemical settings, whilst monitoring formation of toxic bi-products, such as chlorine and other radicals. Experiments of electrochemical water disinfection were carried out on real groundwater samples deliberately contaminated with E. coli culture. During the reaction, microorganisms die due to both direct physical damage and due to the electrochemically generated radicals. Therefore, there is a gentle balance of bacteria elimination versus avoiding excessive radical production in the treated water. Since the biological behaviour of the microorganisms and the chemical properties of the available groundwater cannot be changed, the research parameters boil down to experimenting through various popular electrode types and electrical current settings. In both continuous-flow and recursive systems, the Boron-doped diamond electrodes are observed to provide desirable level of disinfection (as good as Iridium metal-oxide), while yielding lower radicals (as low as those of Graphite-plate), making an ideal compromise for the process.

Supporting Institution

TUBITAK

Project Number

106T615

Thanks

The authors thank TUBITAK for its support of the project "Yeraltı suyunun elektrokimyasal dezenfeksiyonu ve dezenfeksiyon sonrası toksisitesinin belirlenmesi", under contract no: 196T615.

References

  • Z. Şen, Su Bilimi ve Yöntemleri. Su Vakfı, 2003.
  • M. Yalçın, A., Davraz, A., Özçelik, “Yeraltı Sularının Kirlenmesinde Litoloji ve Yerleşim Alanlarının Etkisi: Ulupınar,” Jeol. Mühendisliği Derg., vol. 28, no. 2, 2004.
  • A. R. Freeze, Yeraltı suyu. Gazi Kitabevi, 2003.
  • Ü. Şengül, B., Şengül, “İçme ve Kullanma Suyu Klorlama Teknikleri,” in Kayseri . Atık su Sempozyumu Bildiri Kitabı, 1998, pp. 132–138.
  • J. L. Pérez Pavón, S. Herrero Martín, C. García Pinto, and B. Moreno Cordero, “Determination of trihalomethanes in water samples: A review,” Analytica Chimica Acta, vol. 629, no. 1–2. Elsevier, pp. 6–23, Nov. 2008, doi: 10.1016/j.aca.2008.09.042.
  • L. Janssen, L.J.J., Koene, “The role of electrochemistry and electrochemical technology in environmental protection,” Chem. Eng. J., vol. 85, no. 2, pp. 137–146, 2002.
  • A. R. Rahmani, M. R. Samarghandi, D. Nematollahi, and F. Zamani, “A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes,” J. Environ. Chem. Eng., vol. 7, no. 1, p. 102785, 2019, doi: 10.1016/j.jece.2018.11.030.
  • B. Rajasekhar, U. Venkateshwaran, N. Durairaj, G. Divyapriya, I. M. Nambi, and A. Joseph, “Comprehensive treatment of urban wastewaters using electrochemical advanced oxidation process,” J. Environ. Manage., vol. 266, no. March, p. 110469, 2020, doi: 10.1016/j.jenvman.2020.110469.
  • K. Ghebremichael, E. Muchelemba, B. Petrusevski, and G. Amy, “Electrochemically activated water as an alternative to chlorine for decentralized disinfection,” J. Water Supply Res. Technol. - AQUA, vol. 60, no. 4, pp. 210–218, 2011, doi: 10.2166/aqua.2011.034.
  • A. Kraft, “Electrochemical water disinfection: A short review,” Platin. Met. Rev., vol. 52, no. 3, pp. 177–185, 2008, doi: 10.1595/147106708X329273.
  • H. Särkkä, A. Bhatnagar, and M. Sillanpää, “Recent developments of electro-oxidation in water treatment - A review,” J. Electroanal. Chem., vol. 754, pp. 46–56, 2015, doi: 10.1016/j.jelechem.2015.06.016.
  • J. Saha and S. K. Gupta, “A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection,” Ionics (Kiel)., vol. 23, no. 7, pp. 1903–1913, 2017, doi: 10.1007/s11581-017-2022-0.
  • D. M. Kerwick, M.I., Reddy, S.M., Chamberlain, A.H.L., Holt, “Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection?,” Electrochim. Acta, vol. 50, no. 25, pp. 5270–5277, 2005.
  • T. Feng, C., Suzuki, K., Zhao, S., Sugiura, N., Shimada, S., Maekawa, “Water disinfection by electrochemical treatment,” Bioresour. Technol., vol. 94, no. 1, pp. 21–25, 2004.
  • S. H. Jutter K., Galla U., “Electrochemical approaches to environmental problems in the process industry,” Electrochem. Acta, vol. 45, no. 15, pp. 2575–2594, 2000.
  • D. Zhi et al., “Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review,” J. Environ. Manage., vol. 260, no. October 2019, p. 110125, 2020, doi: 10.1016/j.jenvman.2020.110125.
  • A. De Battisti, P. Formaglio, S. Ferro, M. Al Aukidy, and P. Verlicchi, “Electrochemical disinfection of groundwater for civil use – An example of an effective endogenous advanced oxidation process,” Chemosphere, vol. 207, pp. 101–109, 2018, doi: 10.1016/j.chemosphere.2018.05.062.
  • A. C. Ndjomgoue-Yossa, C. P. Nanseu-Njiki, I. M. Kengne, and E. Ngameni, “Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation,” Int. J. Environ. Sci. Technol., vol. 12, no. 6, pp. 2103–2110, 2015, doi: 10.1007/s13762-014-0609-9.
  • S. Kourdali, A. Badis, A. Boucherit, K. Boudjema, and A. Saiba, “Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation,” J. Environ. Manage., vol. 226, no. August, pp. 106–119, 2018, doi: 10.1016/j.jenvman.2018.08.038.
  • X. Y. Ni et al., “Disinfection performance and mechanism of the carbon fiber-based flow-through electrode system (FES) towards Gram-negative and Gram-positive bacteria,” Electrochim. Acta, vol. 341, p. 135993, 2020, doi: 10.1016/j.electacta.2020.135993.
  • H. Bergmann, A. T. Koparal, A. S. Koparal, and F. Ehrig, “The influence of products and by-products obtained by drinking water electrolysis on microorganisms,” Microchem. J., vol. 89, no. 2, pp. 98–107, Aug. 2008, doi: 10.1016/j.microc.2007.12.007.
  • A. Cano, P. Cañizares, C. Barrera-Díaz, C. Sáez, and M. A. Rodrigo, “Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters,” Chem. Eng. J., vol. 211–212, pp. 463–469, 2012, doi: 10.1016/j.cej.2012.09.071.
  • J. Isidro et al., “Electro-disinfection with BDD-electrodes featuring PEM technology,” Sep. Purif. Technol., vol. 248, no. May, p. 117081, 2020, doi: 10.1016/j.seppur.2020.117081.
  • H. Song et al., “Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?,” Water Res., vol. 128, pp. 393–401, 2018, doi: 10.1016/j.watres.2017.10.018.
  • H. Song et al., “Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation,” Chem. Eng. J., vol. 391, no. November 2019, p. 123560, 2019, doi: 10.1016/j.cej.2019.123560.
  • A. Farhat, J. Keller, S. Tait, and J. Radjenovic, “Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system,” Electrochem. commun., vol. 89, no. February, pp. 14–18, 2018, doi: 10.1016/j.elecom.2018.02.007.
  • C. Heim, M. Ureña de Vivanco, M. Rajab, E. Müller, T. Letzel, and B. Helmreich, “Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes,” Int. J. Environ. Sci. Technol., vol. 12, no. 10, pp. 3061–3070, 2015, doi: 10.1007/s13762-014-0722-9.
  • X. Qi, T. Wang, Y. Long, and J. Ni, “Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system,” Sci. Rep., vol. 5, no. December 2014, pp. 1–10, 2015, doi: 10.1038/srep10388.
  • Y. Jin, Y. Shi, R. Chen, X. Chen, X. Zheng, and Y. Liu, “Electrochemical disinfection using a modified reticulated vitreous carbon cathode for drinking water treatment,” Chemosphere, vol. 215, pp. 380–387, 2019, doi: 10.1016/j.chemosphere.2018.10.057.
  • S. Wu, G. Liang, X. Guan, G. Qian, and Z. He, “Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor,” Environ. Int., vol. 131, no. July, p. 105024, 2019, doi: 10.1016/j.envint.2019.105024.
  • C. Trellu et al., “Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling,” Appl. Catal. B Environ., vol. 194, pp. 32–41, 2016, doi: 10.1016/j.apcatb.2016.04.039.
  • C. E. Schaefer, C. Andaya, and A. Urtiaga, “Assessment of disinfection and by-product formation during electrochemical treatment of surface water using a Ti/IrO2 anode,” Chem. Eng. J., vol. 264, pp. 411–416, 2015, doi: 10.1016/j.cej.2014.11.082.
  • S. Zhou, S. Huang, X. Li, I. Angelidaki, and Y. Zhang, “Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation,” Chem. Eng. J., vol. 342, no. February, pp. 220–227, 2018, doi: 10.1016/j.cej.2018.02.090.
  • D. Ghernaout, M. Touahmia, and M. Aichouni, “Disinfecting Water: Electrocoagulation as an Efficient Process,” Appl. Eng., vol. 3, no. 1, pp. 1–12, 2019, doi: 10.11648/j.ae.20190301.11.
  • S. Dbira, N. Bensalah, M. I. Ahmad, and A. Bedoui, “Electrochemical oxidation/disinfection of urine wastewaters with different anode materials,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081254.
  • Y. Long, J. Ni, and Z. Wang, “Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes,” Water Res., vol. 84, pp. 198–206, 2015, doi: 10.1016/j.watres.2015.07.035.
  • F. Bimakr, M. P. Ginige, A. H. Kaksonen, D. C. Sutton, G. J. Puzon, and K. Y. Cheng, “Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems,” Sensors Actuators, B Chem., vol. 277, no. June, pp. 526–534, 2018, doi: 10.1016/j.snb.2018.09.005.
  • S. El-Ghzizel, H. Zeggar, M. Tahaikt, F. Tiyal, A. Elmidaoui, and M. Taky, “Nanofiltration process combined with electrochemical disinfection for drinking water production: Feasibility study and optimization,” J. Water Process Eng., vol. 36, no. November 2019, 2020, doi: 10.1016/j.jwpe.2020.101225.
  • Y. Jin et al., “Combination of sunlight with hydrogen peroxide generated at a modified reticulated vitreous carbon for drinking water disinfection,” J. Clean. Prod., vol. 252, p. 119794, 2020, doi: 10.1016/j.jclepro.2019.119794.
  • N. Pichel, M. Vivar, and M. Fuentes, “The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods,” Chemosphere, vol. 218, pp. 1014–1030, 2019, doi: 10.1016/j.chemosphere.2018.11.205.
  • M. Rajab, C. Heim, T. Letzel, J. E. Drewes, and B. Helmreich, “Electrochemical disinfection using boron-doped diamond electrode - The synergetic effects of in situ ozone and free chlorine generation,” Chemosphere, vol. 121, pp. 47–53, 2015, doi: 10.1016/j.chemosphere.2014.10.075.
  • G. Patermarakis and E. Fountoukidis, “Disinfection of water by electrochemical treatment,” Water Res., vol. 24, no. 12, pp. 1491–1496, Dec. 1990, doi: 10.1016/0043-1354(90)90083-I.
  • T. Matsunaga, Y. Namba, and T. Nakajima, “751-Electrochemical sterilization of microbial cells,” Bioelectrochemistry Bioenerg., vol. 13, no. 4–6, pp. 393–400, Dec. 1984, doi: 10.1016/0302-4598(84)87040-3.
  • G. Cossali, E. J. Routledge, M. S. Ratcliffe, H. Blakes, J. E. Fielder, and T. G. Karayiannis, “ Inactivation of E. coli , Legionella , and Pseudomonas in Tap Water Using Electrochemical Disinfection ,” J. Environ. Eng., vol. 142, no. 12, p. 04016063, 2016, doi: 10.1061/(asce)ee.1943-7870.0001134.
  • D. Ghernaout, M. W. Naceur, and A. Aouabed, “On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment,” Desalination, vol. 270, no. 1–3, pp. 9–22, 2011, doi: 10.1016/j.desal.2011.01.010.
  • C. A. Martínez-Huitle and E. Brillas, “Electrochemical Alternatives for Drinking Water Disinfection,” Angew. Chemie Int. Ed., vol. 47, no. 11, pp. 1998–2005, Feb. 2008, doi: 10.1002/anie.200703621.
  • A. M. Polcaro, A. Vacca, M. Mascia, S. Palmas, R. Pompei, and S. Laconi, “Characterization of a stirred tank electrochemical cell for water disinfection processes,” Electrochim. Acta, vol. 52, no. 7, pp. 2595–2602, Feb. 2007, doi: 10.1016/j.electacta.2006.09.015.
  • P. Valero, M. Verbel, J. Silva-Agredo, R. Mosteo, M. P. Ormad, and R. A. Torres-Palma, “Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents,” J. Environ. Manage., vol. 198, pp. 256–265, 2017, doi: 10.1016/j.jenvman.2017.04.070.
  • M. Yang and X. Zhang, “Current trends in the analysis and identification of emerging disinfection byproducts,” Trends Environ. Anal. Chem., vol. 10, pp. 24–34, 2016, doi: 10.1016/j.teac.2016.03.002.
  • P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, “Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism.,” Appl. Environ. Microbiol., vol. 65, no. 9, pp. 4094–8, Sep. 1999.
  • S. Y. Hsu, “Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator,” J. Food Eng., vol. 60, no. 4, pp. 469–473, Dec. 2003, doi: 10.1016/S0260-8774(03)00079-7.
  • H. F. Diao, X. Y. Li, J. D. Gu, H. C. Shi, and Z. M. Xie, “Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction,” Process Biochem., vol. 39, no. 11, pp. 1421–1426, Jul. 2004, doi: 10.1016/S0032-9592(03)00274-7.
  • H. Bergmann and S. Koparal, “The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection,” in Electrochimica Acta, Sep. 2005, vol. 50, no. 25-26 SPEC. ISS., pp. 5218–5228, doi: 10.1016/j.electacta.2005.01.061.
  • T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement. Hach Company, 2015
  • J. Ge and J. Qu, “Ultrasonic irradiation enhanced degradation of azo dye on MnO2,” Appl. Catal. B Environ., vol. 47, no. 2, pp. 133–140, Jan. 2004, doi: 10.1016/j.apcatb.2003.08.001.
  • O. Scialdone, F. Proietto, A. Galia, “Electrochemical production and use of chlorinated oxidants for the treatment of wastewater contaminated by organic pollutants and disinfection," Current Opinion in Electrochemistry, vol. 27, Jan. 2021, doi: 10.1016/j.coelec.2020.100682 .
  • H. Li, J. Ni, “Electrogeneration of disinfection byproducts at a boron-doped diamond anode with resorcinol as a model substance," Electrochimica Acta, vol. 69, pp. 268-274, 2012, doi: 10.1016/j.electracta.2012.02.098 .

Elektrokimyasal Su Dezenfeksiyonunda Elektrot Tipinin Bakteri Arıtımı ile Klor ve Radikal Üretimine Etkisi

Year 2021, , 787 - 801, 15.09.2021
https://doi.org/10.21205/deufmd.2021236908

Abstract

Su kaynaklarında tehlikeli bakteri ve virüs üremesi önemli bir problem olmaya devam etmektedir. Bu kirlenmenin başlıca nedeni, su kaynaklarından önemli bir kısmını oluşturan yeraltı suyunun şehir ve endüstri atıklarından bulaşmaya açık olmasıdır. Bu çalışmada bu tarz suların dezenfeksiyonu için elektrokimyasal arıtım ele alınmaktadır. Literatürde tek tek ele alınmış pek çok elektrokimyasal arıtım çalışması mevcuttur. Bu çalışmada bor kaplı elmas elektrot, iridyum metal-oksit elektrot ve grafit plaka elektrotları ele alınmaktadır. Pek çok elektrokimyasal parametre seviyesinde bakteri ölümleri izlenirken bir yandan da klor ve diğer toksik radikal oluşumları izlenmiştir. Deneyler, gerçek yeraltı suyuna kontrollü şekilde eklenmiş E.coli kültürü ile yapılmıştır. Reaksiyon sırasında mikroorganizmalar hem doğrudan elektriksel ve fiziksel nedenlerle, hem de oluşan radikaller nedeniyle ölmektedir. Dolayısıyla arıtım esnasında bakterilerin eliminasyonu ile zehirli çıktı oluşturma arasında hassas bir denge mevcuttur. Bu süreçte mikroorganizmaların biyolojik yapısı ya da yer altı suyunun kimyasal kompozisyonu kontrol edilemeyeceğine göre araştırma parametresi olarak elektrot tipinin değiştirilmesi ve elektrik seviyesinin ayarlanması mantıklı bir yaklaşımdır. Deneysel olarak görülmektedir ki hem sürekli akış, hem de kesikli arıtım sistemlerinde bor kaplamalı elektrotlar, denenenler arasında en ideal seçim olmaktadır, zira dezenfeksiyon seviyelerini iridyum metal-oksit elektrot seçimi kadar yüksek seviyede yapabilirken bir yandan da grafit plaka elektrotlar kadar az miktarda radikal üretmektedir.

Project Number

106T615

References

  • Z. Şen, Su Bilimi ve Yöntemleri. Su Vakfı, 2003.
  • M. Yalçın, A., Davraz, A., Özçelik, “Yeraltı Sularının Kirlenmesinde Litoloji ve Yerleşim Alanlarının Etkisi: Ulupınar,” Jeol. Mühendisliği Derg., vol. 28, no. 2, 2004.
  • A. R. Freeze, Yeraltı suyu. Gazi Kitabevi, 2003.
  • Ü. Şengül, B., Şengül, “İçme ve Kullanma Suyu Klorlama Teknikleri,” in Kayseri . Atık su Sempozyumu Bildiri Kitabı, 1998, pp. 132–138.
  • J. L. Pérez Pavón, S. Herrero Martín, C. García Pinto, and B. Moreno Cordero, “Determination of trihalomethanes in water samples: A review,” Analytica Chimica Acta, vol. 629, no. 1–2. Elsevier, pp. 6–23, Nov. 2008, doi: 10.1016/j.aca.2008.09.042.
  • L. Janssen, L.J.J., Koene, “The role of electrochemistry and electrochemical technology in environmental protection,” Chem. Eng. J., vol. 85, no. 2, pp. 137–146, 2002.
  • A. R. Rahmani, M. R. Samarghandi, D. Nematollahi, and F. Zamani, “A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes,” J. Environ. Chem. Eng., vol. 7, no. 1, p. 102785, 2019, doi: 10.1016/j.jece.2018.11.030.
  • B. Rajasekhar, U. Venkateshwaran, N. Durairaj, G. Divyapriya, I. M. Nambi, and A. Joseph, “Comprehensive treatment of urban wastewaters using electrochemical advanced oxidation process,” J. Environ. Manage., vol. 266, no. March, p. 110469, 2020, doi: 10.1016/j.jenvman.2020.110469.
  • K. Ghebremichael, E. Muchelemba, B. Petrusevski, and G. Amy, “Electrochemically activated water as an alternative to chlorine for decentralized disinfection,” J. Water Supply Res. Technol. - AQUA, vol. 60, no. 4, pp. 210–218, 2011, doi: 10.2166/aqua.2011.034.
  • A. Kraft, “Electrochemical water disinfection: A short review,” Platin. Met. Rev., vol. 52, no. 3, pp. 177–185, 2008, doi: 10.1595/147106708X329273.
  • H. Särkkä, A. Bhatnagar, and M. Sillanpää, “Recent developments of electro-oxidation in water treatment - A review,” J. Electroanal. Chem., vol. 754, pp. 46–56, 2015, doi: 10.1016/j.jelechem.2015.06.016.
  • J. Saha and S. K. Gupta, “A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection,” Ionics (Kiel)., vol. 23, no. 7, pp. 1903–1913, 2017, doi: 10.1007/s11581-017-2022-0.
  • D. M. Kerwick, M.I., Reddy, S.M., Chamberlain, A.H.L., Holt, “Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection?,” Electrochim. Acta, vol. 50, no. 25, pp. 5270–5277, 2005.
  • T. Feng, C., Suzuki, K., Zhao, S., Sugiura, N., Shimada, S., Maekawa, “Water disinfection by electrochemical treatment,” Bioresour. Technol., vol. 94, no. 1, pp. 21–25, 2004.
  • S. H. Jutter K., Galla U., “Electrochemical approaches to environmental problems in the process industry,” Electrochem. Acta, vol. 45, no. 15, pp. 2575–2594, 2000.
  • D. Zhi et al., “Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review,” J. Environ. Manage., vol. 260, no. October 2019, p. 110125, 2020, doi: 10.1016/j.jenvman.2020.110125.
  • A. De Battisti, P. Formaglio, S. Ferro, M. Al Aukidy, and P. Verlicchi, “Electrochemical disinfection of groundwater for civil use – An example of an effective endogenous advanced oxidation process,” Chemosphere, vol. 207, pp. 101–109, 2018, doi: 10.1016/j.chemosphere.2018.05.062.
  • A. C. Ndjomgoue-Yossa, C. P. Nanseu-Njiki, I. M. Kengne, and E. Ngameni, “Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation,” Int. J. Environ. Sci. Technol., vol. 12, no. 6, pp. 2103–2110, 2015, doi: 10.1007/s13762-014-0609-9.
  • S. Kourdali, A. Badis, A. Boucherit, K. Boudjema, and A. Saiba, “Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation,” J. Environ. Manage., vol. 226, no. August, pp. 106–119, 2018, doi: 10.1016/j.jenvman.2018.08.038.
  • X. Y. Ni et al., “Disinfection performance and mechanism of the carbon fiber-based flow-through electrode system (FES) towards Gram-negative and Gram-positive bacteria,” Electrochim. Acta, vol. 341, p. 135993, 2020, doi: 10.1016/j.electacta.2020.135993.
  • H. Bergmann, A. T. Koparal, A. S. Koparal, and F. Ehrig, “The influence of products and by-products obtained by drinking water electrolysis on microorganisms,” Microchem. J., vol. 89, no. 2, pp. 98–107, Aug. 2008, doi: 10.1016/j.microc.2007.12.007.
  • A. Cano, P. Cañizares, C. Barrera-Díaz, C. Sáez, and M. A. Rodrigo, “Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters,” Chem. Eng. J., vol. 211–212, pp. 463–469, 2012, doi: 10.1016/j.cej.2012.09.071.
  • J. Isidro et al., “Electro-disinfection with BDD-electrodes featuring PEM technology,” Sep. Purif. Technol., vol. 248, no. May, p. 117081, 2020, doi: 10.1016/j.seppur.2020.117081.
  • H. Song et al., “Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?,” Water Res., vol. 128, pp. 393–401, 2018, doi: 10.1016/j.watres.2017.10.018.
  • H. Song et al., “Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation,” Chem. Eng. J., vol. 391, no. November 2019, p. 123560, 2019, doi: 10.1016/j.cej.2019.123560.
  • A. Farhat, J. Keller, S. Tait, and J. Radjenovic, “Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system,” Electrochem. commun., vol. 89, no. February, pp. 14–18, 2018, doi: 10.1016/j.elecom.2018.02.007.
  • C. Heim, M. Ureña de Vivanco, M. Rajab, E. Müller, T. Letzel, and B. Helmreich, “Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes,” Int. J. Environ. Sci. Technol., vol. 12, no. 10, pp. 3061–3070, 2015, doi: 10.1007/s13762-014-0722-9.
  • X. Qi, T. Wang, Y. Long, and J. Ni, “Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system,” Sci. Rep., vol. 5, no. December 2014, pp. 1–10, 2015, doi: 10.1038/srep10388.
  • Y. Jin, Y. Shi, R. Chen, X. Chen, X. Zheng, and Y. Liu, “Electrochemical disinfection using a modified reticulated vitreous carbon cathode for drinking water treatment,” Chemosphere, vol. 215, pp. 380–387, 2019, doi: 10.1016/j.chemosphere.2018.10.057.
  • S. Wu, G. Liang, X. Guan, G. Qian, and Z. He, “Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor,” Environ. Int., vol. 131, no. July, p. 105024, 2019, doi: 10.1016/j.envint.2019.105024.
  • C. Trellu et al., “Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling,” Appl. Catal. B Environ., vol. 194, pp. 32–41, 2016, doi: 10.1016/j.apcatb.2016.04.039.
  • C. E. Schaefer, C. Andaya, and A. Urtiaga, “Assessment of disinfection and by-product formation during electrochemical treatment of surface water using a Ti/IrO2 anode,” Chem. Eng. J., vol. 264, pp. 411–416, 2015, doi: 10.1016/j.cej.2014.11.082.
  • S. Zhou, S. Huang, X. Li, I. Angelidaki, and Y. Zhang, “Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation,” Chem. Eng. J., vol. 342, no. February, pp. 220–227, 2018, doi: 10.1016/j.cej.2018.02.090.
  • D. Ghernaout, M. Touahmia, and M. Aichouni, “Disinfecting Water: Electrocoagulation as an Efficient Process,” Appl. Eng., vol. 3, no. 1, pp. 1–12, 2019, doi: 10.11648/j.ae.20190301.11.
  • S. Dbira, N. Bensalah, M. I. Ahmad, and A. Bedoui, “Electrochemical oxidation/disinfection of urine wastewaters with different anode materials,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081254.
  • Y. Long, J. Ni, and Z. Wang, “Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes,” Water Res., vol. 84, pp. 198–206, 2015, doi: 10.1016/j.watres.2015.07.035.
  • F. Bimakr, M. P. Ginige, A. H. Kaksonen, D. C. Sutton, G. J. Puzon, and K. Y. Cheng, “Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems,” Sensors Actuators, B Chem., vol. 277, no. June, pp. 526–534, 2018, doi: 10.1016/j.snb.2018.09.005.
  • S. El-Ghzizel, H. Zeggar, M. Tahaikt, F. Tiyal, A. Elmidaoui, and M. Taky, “Nanofiltration process combined with electrochemical disinfection for drinking water production: Feasibility study and optimization,” J. Water Process Eng., vol. 36, no. November 2019, 2020, doi: 10.1016/j.jwpe.2020.101225.
  • Y. Jin et al., “Combination of sunlight with hydrogen peroxide generated at a modified reticulated vitreous carbon for drinking water disinfection,” J. Clean. Prod., vol. 252, p. 119794, 2020, doi: 10.1016/j.jclepro.2019.119794.
  • N. Pichel, M. Vivar, and M. Fuentes, “The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods,” Chemosphere, vol. 218, pp. 1014–1030, 2019, doi: 10.1016/j.chemosphere.2018.11.205.
  • M. Rajab, C. Heim, T. Letzel, J. E. Drewes, and B. Helmreich, “Electrochemical disinfection using boron-doped diamond electrode - The synergetic effects of in situ ozone and free chlorine generation,” Chemosphere, vol. 121, pp. 47–53, 2015, doi: 10.1016/j.chemosphere.2014.10.075.
  • G. Patermarakis and E. Fountoukidis, “Disinfection of water by electrochemical treatment,” Water Res., vol. 24, no. 12, pp. 1491–1496, Dec. 1990, doi: 10.1016/0043-1354(90)90083-I.
  • T. Matsunaga, Y. Namba, and T. Nakajima, “751-Electrochemical sterilization of microbial cells,” Bioelectrochemistry Bioenerg., vol. 13, no. 4–6, pp. 393–400, Dec. 1984, doi: 10.1016/0302-4598(84)87040-3.
  • G. Cossali, E. J. Routledge, M. S. Ratcliffe, H. Blakes, J. E. Fielder, and T. G. Karayiannis, “ Inactivation of E. coli , Legionella , and Pseudomonas in Tap Water Using Electrochemical Disinfection ,” J. Environ. Eng., vol. 142, no. 12, p. 04016063, 2016, doi: 10.1061/(asce)ee.1943-7870.0001134.
  • D. Ghernaout, M. W. Naceur, and A. Aouabed, “On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment,” Desalination, vol. 270, no. 1–3, pp. 9–22, 2011, doi: 10.1016/j.desal.2011.01.010.
  • C. A. Martínez-Huitle and E. Brillas, “Electrochemical Alternatives for Drinking Water Disinfection,” Angew. Chemie Int. Ed., vol. 47, no. 11, pp. 1998–2005, Feb. 2008, doi: 10.1002/anie.200703621.
  • A. M. Polcaro, A. Vacca, M. Mascia, S. Palmas, R. Pompei, and S. Laconi, “Characterization of a stirred tank electrochemical cell for water disinfection processes,” Electrochim. Acta, vol. 52, no. 7, pp. 2595–2602, Feb. 2007, doi: 10.1016/j.electacta.2006.09.015.
  • P. Valero, M. Verbel, J. Silva-Agredo, R. Mosteo, M. P. Ormad, and R. A. Torres-Palma, “Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents,” J. Environ. Manage., vol. 198, pp. 256–265, 2017, doi: 10.1016/j.jenvman.2017.04.070.
  • M. Yang and X. Zhang, “Current trends in the analysis and identification of emerging disinfection byproducts,” Trends Environ. Anal. Chem., vol. 10, pp. 24–34, 2016, doi: 10.1016/j.teac.2016.03.002.
  • P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, “Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism.,” Appl. Environ. Microbiol., vol. 65, no. 9, pp. 4094–8, Sep. 1999.
  • S. Y. Hsu, “Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator,” J. Food Eng., vol. 60, no. 4, pp. 469–473, Dec. 2003, doi: 10.1016/S0260-8774(03)00079-7.
  • H. F. Diao, X. Y. Li, J. D. Gu, H. C. Shi, and Z. M. Xie, “Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction,” Process Biochem., vol. 39, no. 11, pp. 1421–1426, Jul. 2004, doi: 10.1016/S0032-9592(03)00274-7.
  • H. Bergmann and S. Koparal, “The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection,” in Electrochimica Acta, Sep. 2005, vol. 50, no. 25-26 SPEC. ISS., pp. 5218–5228, doi: 10.1016/j.electacta.2005.01.061.
  • T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement. Hach Company, 2015
  • J. Ge and J. Qu, “Ultrasonic irradiation enhanced degradation of azo dye on MnO2,” Appl. Catal. B Environ., vol. 47, no. 2, pp. 133–140, Jan. 2004, doi: 10.1016/j.apcatb.2003.08.001.
  • O. Scialdone, F. Proietto, A. Galia, “Electrochemical production and use of chlorinated oxidants for the treatment of wastewater contaminated by organic pollutants and disinfection," Current Opinion in Electrochemistry, vol. 27, Jan. 2021, doi: 10.1016/j.coelec.2020.100682 .
  • H. Li, J. Ni, “Electrogeneration of disinfection byproducts at a boron-doped diamond anode with resorcinol as a model substance," Electrochimica Acta, vol. 69, pp. 268-274, 2012, doi: 10.1016/j.electracta.2012.02.098 .
There are 57 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Emine Esra Gerek 0000-0001-5282-9257

Ayşe Tansu Koparal 0000-0001-8201-6708

Savaş Koparal 0000-0002-6894-5604

Project Number 106T615
Publication Date September 15, 2021
Published in Issue Year 2021

Cite

APA Gerek, E. E., Koparal, A. T., & Koparal, S. (2021). Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 787-801. https://doi.org/10.21205/deufmd.2021236908
AMA Gerek EE, Koparal AT, Koparal S. Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection. DEUFMD. September 2021;23(69):787-801. doi:10.21205/deufmd.2021236908
Chicago Gerek, Emine Esra, Ayşe Tansu Koparal, and Savaş Koparal. “Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 787-801. https://doi.org/10.21205/deufmd.2021236908.
EndNote Gerek EE, Koparal AT, Koparal S (September 1, 2021) Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 787–801.
IEEE E. E. Gerek, A. T. Koparal, and S. Koparal, “Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection”, DEUFMD, vol. 23, no. 69, pp. 787–801, 2021, doi: 10.21205/deufmd.2021236908.
ISNAD Gerek, Emine Esra et al. “Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 787-801. https://doi.org/10.21205/deufmd.2021236908.
JAMA Gerek EE, Koparal AT, Koparal S. Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection. DEUFMD. 2021;23:787–801.
MLA Gerek, Emine Esra et al. “Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 787-01, doi:10.21205/deufmd.2021236908.
Vancouver Gerek EE, Koparal AT, Koparal S. Effect of Electrode Type on Bacteria Removal and Chlorine and Radical Production in Electrochemical Water Disinfection. DEUFMD. 2021;23(69):787-801.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.