Research Article
BibTex RIS Cite

Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method

Year 2021, , 755 - 765, 15.09.2021
https://doi.org/10.21205/deufmd.2021236905

Abstract

The usage area of 3D printers from architecture to heavy industry has been increasing in recent decades. By this process, it is possible to manufacture structures having different geometric configurations to improve the mechanical, vibration, impact, and acoustic properties of the structures. In this study, three-point test specimens with different topologies were produced by the 3D printing method in order to see the effect of the geometric configuration. The specimens having 100% infill density were produced using PLA (Polylactic Acid), ABS (Acrylonitrile Butadiene Styrene) and PETG (Polyethylene terephthalate glycol-modified) filament materials with the additive manufacturing method, which is the most widely used method in three-dimensional production. Numerical and experimental results are compared for loading conditions at specific force values.

References

  • [1] Tarang, Y.E. 2015.3D printing additive manufacturing. International Education and Research Journal, 1(4), 21-23.
  • [2] Horvath, J. 2014. A Brief History of 3D Printing. In Mastering 3D Printing (pp. 3-10). A Press, Berkeley, CA.
  • [3] Özsoy, K., Duman, B. 2017. Usability of additive manufacturing (3D printing) technologies in education (in Turkish). International Journal of 3D Printing Technologies and Digital Industry, 1(1), 36-48.
  • [4] Kai, C. C., & Fai, L. K. 1997. Rapid Prototyping. Nanyang Technological University.
  • [5] Rebenaque, A. G., & González-Requena, I. 2019. Study of bending test of specimens obtained through FDM processes of additive manufacturing. Procedia Manufacturing, 41, 859-866.
  • [6] Kołodziej, A., Żur, P., & Borek, W.2019. Influence of 3D-printing parameters on mechanical properties of PLA defined in the static bending test. European Journal of Engineering Science and Technology, 2(1), 65-70.
  • [7] Hernandez, R., Slaughter, D., Whaley, D., Tate, J., & Asiabanpour, B. 2016. Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling. In 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX (pp. 939-950).
  • [8] Harshitha, V., & Rao, S. S. 2019. Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials. Materials Today: Proceedings, 19, 583-588.
  • [9] Abbot, D. W., Kallon, D. V. V., Anghel, C., & Dube, P. 2019. Finite element analysis of 3D printed model via compression tests. Procedia Manufacturing, 35, 164-173.
  • [10] Abeykoon, C., Sri-Amphorn, P., & Fernando, A. 2020. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), 284-297.
  • [11] Sayre, R. 2014. A comparative finite element stress analysis of isotropic and fusion deposited 3D printed polymer. Rensselaer Polytechnic Institute Hartford, Connecticut, USA.
  • [12] Martínez, J., Diéguez, J. L., Ares, E., Pereira, A., Hernández, P., & Pérez, J. A. 2013. Comparative between FEM models for FDM parts and their approach to a real mechanical behavior. Procedia Engineering, 63, 878-884.
  • [13] Zhou, X., Hsieh, S. J., & Ting, C. C. 2018. Modelling and estimation of tensile behavior of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library. Virtual and Physical Prototyping, 13(3), 177-190.
  • [14] Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., Hermenean, K. 2018. 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193.
  • [15] Ercan, N., Kanber, B., Yunus, D. E. 2018. Investigation of bending behavior of sandwich panels with different cellular structures by using finite element method (in Turkish). 2nd International Symposium on Innovative Approaches in Scientific Studies, 11 (3), 232-235.
  • [16] Ray, S. S., & Okamoto, M. 2003. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecular Rapid Communications, 24(14), 815-840.
  • [17] Byrley, P., George, B. J., Boyes, W. K., Rogers, K. 2019. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Science of The Total Environment, 655, 395-407.
  • [18] Porima. Printing Filament. Available: https://www.porima3d.com, 2020.
  • [19] Standard A. ASTM D790. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, West Conshohocken, PA, 2017.
  • [20] Standard A. ASTM C393–00. Standard test method for flexural properties of sandwich constructions, ASTM International, West Conshohocken, PA, 2000.
  • [21] Guo, N., Leu, M. C. 2013. Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215-243.

Topoloji ve Malzemenin Eklemeli İmalat Yöntemiyle Üretilen Yapıların Mekanik Özelliklerine Etkileri

Year 2021, , 755 - 765, 15.09.2021
https://doi.org/10.21205/deufmd.2021236905

Abstract

Son yıllarda mimariden ağır sektöre kadar 3B yazıcıların kullanım alanı artmaktadır. Bu yöntem ile yapıların mekanik, titreşim, darbe ve akustik özelliklerini iyileştirmek için farklı geometrik konfigürasyonlara sahip yapılar üretmek mümkündür. Bu çalışmada, geometrik konfigürasyonun etkisini görmek için farklı topolojilerde üç nokta deney numuneleri 3B baskı yöntemi ile üretilmiştir. % 100 dolgu yoğunluğuna sahip numuneler PLA (Polilaktik asit), ABS (Akrilonitril bütadien stiren) ve PETG (polietilen tereftalat glikolle değişmiş) filament malzemeleri kullanılarak üç boyutlu üretimde en yaygın kullanılan yöntem olan eklemeli imalat yöntemi ile üretilmiştir. Belirli kuvvet değerlerindeki yükleme koşulları için sayısal ve deneysel sonuçlar karşılaştırılmıştır.

References

  • [1] Tarang, Y.E. 2015.3D printing additive manufacturing. International Education and Research Journal, 1(4), 21-23.
  • [2] Horvath, J. 2014. A Brief History of 3D Printing. In Mastering 3D Printing (pp. 3-10). A Press, Berkeley, CA.
  • [3] Özsoy, K., Duman, B. 2017. Usability of additive manufacturing (3D printing) technologies in education (in Turkish). International Journal of 3D Printing Technologies and Digital Industry, 1(1), 36-48.
  • [4] Kai, C. C., & Fai, L. K. 1997. Rapid Prototyping. Nanyang Technological University.
  • [5] Rebenaque, A. G., & González-Requena, I. 2019. Study of bending test of specimens obtained through FDM processes of additive manufacturing. Procedia Manufacturing, 41, 859-866.
  • [6] Kołodziej, A., Żur, P., & Borek, W.2019. Influence of 3D-printing parameters on mechanical properties of PLA defined in the static bending test. European Journal of Engineering Science and Technology, 2(1), 65-70.
  • [7] Hernandez, R., Slaughter, D., Whaley, D., Tate, J., & Asiabanpour, B. 2016. Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling. In 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX (pp. 939-950).
  • [8] Harshitha, V., & Rao, S. S. 2019. Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials. Materials Today: Proceedings, 19, 583-588.
  • [9] Abbot, D. W., Kallon, D. V. V., Anghel, C., & Dube, P. 2019. Finite element analysis of 3D printed model via compression tests. Procedia Manufacturing, 35, 164-173.
  • [10] Abeykoon, C., Sri-Amphorn, P., & Fernando, A. 2020. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), 284-297.
  • [11] Sayre, R. 2014. A comparative finite element stress analysis of isotropic and fusion deposited 3D printed polymer. Rensselaer Polytechnic Institute Hartford, Connecticut, USA.
  • [12] Martínez, J., Diéguez, J. L., Ares, E., Pereira, A., Hernández, P., & Pérez, J. A. 2013. Comparative between FEM models for FDM parts and their approach to a real mechanical behavior. Procedia Engineering, 63, 878-884.
  • [13] Zhou, X., Hsieh, S. J., & Ting, C. C. 2018. Modelling and estimation of tensile behavior of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library. Virtual and Physical Prototyping, 13(3), 177-190.
  • [14] Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., Hermenean, K. 2018. 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193.
  • [15] Ercan, N., Kanber, B., Yunus, D. E. 2018. Investigation of bending behavior of sandwich panels with different cellular structures by using finite element method (in Turkish). 2nd International Symposium on Innovative Approaches in Scientific Studies, 11 (3), 232-235.
  • [16] Ray, S. S., & Okamoto, M. 2003. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecular Rapid Communications, 24(14), 815-840.
  • [17] Byrley, P., George, B. J., Boyes, W. K., Rogers, K. 2019. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Science of The Total Environment, 655, 395-407.
  • [18] Porima. Printing Filament. Available: https://www.porima3d.com, 2020.
  • [19] Standard A. ASTM D790. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, West Conshohocken, PA, 2017.
  • [20] Standard A. ASTM C393–00. Standard test method for flexural properties of sandwich constructions, ASTM International, West Conshohocken, PA, 2000.
  • [21] Guo, N., Leu, M. C. 2013. Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215-243.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Gizem Acar Yavuz

Binnur Gören Kıral 0000-0001-7760-9306

Samet Katre 0000-0001-9010-3406

Dilek Atilla 0000-0002-8383-7433

Publication Date September 15, 2021
Published in Issue Year 2021

Cite

APA Acar Yavuz, G., Gören Kıral, B., Katre, S., Atilla, D. (2021). Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 755-765. https://doi.org/10.21205/deufmd.2021236905
AMA Acar Yavuz G, Gören Kıral B, Katre S, Atilla D. Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method. DEUFMD. September 2021;23(69):755-765. doi:10.21205/deufmd.2021236905
Chicago Acar Yavuz, Gizem, Binnur Gören Kıral, Samet Katre, and Dilek Atilla. “Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 755-65. https://doi.org/10.21205/deufmd.2021236905.
EndNote Acar Yavuz G, Gören Kıral B, Katre S, Atilla D (September 1, 2021) Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 755–765.
IEEE G. Acar Yavuz, B. Gören Kıral, S. Katre, and D. Atilla, “Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method”, DEUFMD, vol. 23, no. 69, pp. 755–765, 2021, doi: 10.21205/deufmd.2021236905.
ISNAD Acar Yavuz, Gizem et al. “Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 755-765. https://doi.org/10.21205/deufmd.2021236905.
JAMA Acar Yavuz G, Gören Kıral B, Katre S, Atilla D. Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method. DEUFMD. 2021;23:755–765.
MLA Acar Yavuz, Gizem et al. “Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 755-6, doi:10.21205/deufmd.2021236905.
Vancouver Acar Yavuz G, Gören Kıral B, Katre S, Atilla D. Effects of Topology and Material on Mechanical Properties of Structures Produced by the Additive Manufacturing Method. DEUFMD. 2021;23(69):755-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.