BibTex RIS Cite

CHARACTERISTIC PROPERTIES OF THE NEW SUBCLASSES OF ANALYTIC FUNCTIONS

Year 2017, Volume: 19 Issue: 55, 247 - 257, 01.01.2017

Abstract

In this study, we introduce and investigate two new subclasses of analytic functions in the open unit disk. The object of the present paper is to derive characteristic properties of the functions belonging to these classes. Further, several coefficient inequalities for the functions belonging to these classes are also given

References

  • [1] Frasin, B. A. 2012. New subclasses of analytic functions: Journal of Inequalities and Applications, Volume 24, pp. 1-10.
  • [2] Cho, N. E. and Kim, J. A. 2006. Inclusion Properties of Certain Subclasses of Analytic Functions Defined by a Multiplier Transformation: Computers and Mathematics with Applications, Volume 52, pp. 323-330.
  • [3] Darus, M. and Faisal, I. 2012. Some subclasses of analytic functions of complex order defined by new differential operator: Tamkang Journal of Mathematics, Volume 43, pp. 223-242.
  • [4] Gao, C. Y., Zhou, S. Q. 2005. On a class of analytic functions related to the class to the starlike functions: Kyungpook Mathematical Journal, Volume 45, pp. 123-130.
  • [5] Kowalczyk, J., Les-Bomba, E. 2010. On a subclass of close-to-convex functions: Applied Mathematics Letters, Volume 23, pp. 1147-1151.
  • [6] Xu, Q. H., Srivastava, H. M., Li, Z. 2011. A certain subclass of analytic and close-to-convex functions: Applied Mathematics Letters, Volume 24, pp. 396-401.
  • [7] Wang, Z. G., Chen, D. Z. 2009. On a certain subclass of close-to-conex functions: Hacettepe Journal of Mathematics and Statistics, Volume 38, pp. 95-101.
  • [8] Prajapat, J. K. 2012. Inclusion properties for certain class of analytic functions involving multiplier transformation operator: Journal of Classical Analysis, Volume 1, pp. 35-42.
  • [9] Prajapat, J. K. 2016. A new subclass of close-to-convex functions: Surveys in Mathematics and Applications, Volume 11, pp. 11-19.
  • [10] Mustafa, N. 2016. Close-toconvexity of normalized Wright functions: Dokuz Eylul UniversityFaculty of Engineering Journal of Science and Engineering, Volume 18, pp. 290-303.
  • [11] Panigrahi, T., Murugusundaramoorthy, G. 2016. On Successive Coefficient Estimate for Certain Subclass of Analytic Functions: Applied Mathematics ENotes, Volume 16, pp. 117-124.
  • [12] Duren, P. L. 1983. Univalent Functions. Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York, SpringerVerlag, 382p.
  • [13] Goodman, A. W. 1983. Univalent Functions. Volume I, Washington, Polygonal, 246p.
  • [14] Srivastava, H. M. and Owa, S. (Ed.) 1992. Current Topic in Analytic Function Theory. World Scientific Publishing Company, New Jersey, London, Hong Kong, 456p.
  • [15] Altıntaş, O. and Owa, S. 1988. On subclasses of univalent functions with negative coefficients: Pusan Kyongnam Mathematical Journal, Volume 4, pp. 41-56.
  • [16] Moustafa, A. O. 2009. A study on starlike and convex properties for hypergeometric functions: Journal of Inequalities in Pure and Applied Mathematics, Volume 10, pp. 1-16.
  • [17] Porwal, S. and Dixit K. K. 2013. An application of generalized Bessel functions on certain analytic functions: Acta Universitatis Matthiae Belii series Mathematics, pp. 51-57.
  • [18] Siverman, H. 1975. Univalent Functions with Negative Coefficients: American Mathematical Society, Volume 51, pp. 106-116.
  • [19] Altıntaş, O. 1991. On a subclass of certain starlike functions with negative coefficient: Mathematica Japonica, Volume 36, pp. 489-495.
  • [20] Altıntaş, O., Irmak, H. and Srivastava, H. M. 1995. Fractional calculus and certain starlike functions with negative coefficients: Computers and Mathematics with Applications, Volume 30, pp. 9-16.
  • [21] Altıntaş, O., Özkan, Ö. and Srivistava, H. M. 2004. Neighbourhoods of a Certain Family of Multivalent Functions with Negative Coefficients: Computers and Mathematics with Applications, Volume 47, pp. 1667- 1672.
  • [22] Porwal, S. 2014. An application of a Poisson distribution series on certain analytic functions: Journal of Complex Analysis, Article ID 984135, pp. 1-3.

ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ

Year 2017, Volume: 19 Issue: 55, 247 - 257, 01.01.2017

Abstract

Bu çalışmada biz açık birim diskte analitik fonksiyonların iki yeni altsınıfını tanımladık ve araştırdık. Mevcut çalışmanın amacı bu sınıflara ait fonksiyonların karakteristik özelliklerini elde etmektir. Dahası, bu sınıflara ait olan fonksiyonlar için çeşitli katsayı eşitsizlikleri de verilmiştir

References

  • [1] Frasin, B. A. 2012. New subclasses of analytic functions: Journal of Inequalities and Applications, Volume 24, pp. 1-10.
  • [2] Cho, N. E. and Kim, J. A. 2006. Inclusion Properties of Certain Subclasses of Analytic Functions Defined by a Multiplier Transformation: Computers and Mathematics with Applications, Volume 52, pp. 323-330.
  • [3] Darus, M. and Faisal, I. 2012. Some subclasses of analytic functions of complex order defined by new differential operator: Tamkang Journal of Mathematics, Volume 43, pp. 223-242.
  • [4] Gao, C. Y., Zhou, S. Q. 2005. On a class of analytic functions related to the class to the starlike functions: Kyungpook Mathematical Journal, Volume 45, pp. 123-130.
  • [5] Kowalczyk, J., Les-Bomba, E. 2010. On a subclass of close-to-convex functions: Applied Mathematics Letters, Volume 23, pp. 1147-1151.
  • [6] Xu, Q. H., Srivastava, H. M., Li, Z. 2011. A certain subclass of analytic and close-to-convex functions: Applied Mathematics Letters, Volume 24, pp. 396-401.
  • [7] Wang, Z. G., Chen, D. Z. 2009. On a certain subclass of close-to-conex functions: Hacettepe Journal of Mathematics and Statistics, Volume 38, pp. 95-101.
  • [8] Prajapat, J. K. 2012. Inclusion properties for certain class of analytic functions involving multiplier transformation operator: Journal of Classical Analysis, Volume 1, pp. 35-42.
  • [9] Prajapat, J. K. 2016. A new subclass of close-to-convex functions: Surveys in Mathematics and Applications, Volume 11, pp. 11-19.
  • [10] Mustafa, N. 2016. Close-toconvexity of normalized Wright functions: Dokuz Eylul UniversityFaculty of Engineering Journal of Science and Engineering, Volume 18, pp. 290-303.
  • [11] Panigrahi, T., Murugusundaramoorthy, G. 2016. On Successive Coefficient Estimate for Certain Subclass of Analytic Functions: Applied Mathematics ENotes, Volume 16, pp. 117-124.
  • [12] Duren, P. L. 1983. Univalent Functions. Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York, SpringerVerlag, 382p.
  • [13] Goodman, A. W. 1983. Univalent Functions. Volume I, Washington, Polygonal, 246p.
  • [14] Srivastava, H. M. and Owa, S. (Ed.) 1992. Current Topic in Analytic Function Theory. World Scientific Publishing Company, New Jersey, London, Hong Kong, 456p.
  • [15] Altıntaş, O. and Owa, S. 1988. On subclasses of univalent functions with negative coefficients: Pusan Kyongnam Mathematical Journal, Volume 4, pp. 41-56.
  • [16] Moustafa, A. O. 2009. A study on starlike and convex properties for hypergeometric functions: Journal of Inequalities in Pure and Applied Mathematics, Volume 10, pp. 1-16.
  • [17] Porwal, S. and Dixit K. K. 2013. An application of generalized Bessel functions on certain analytic functions: Acta Universitatis Matthiae Belii series Mathematics, pp. 51-57.
  • [18] Siverman, H. 1975. Univalent Functions with Negative Coefficients: American Mathematical Society, Volume 51, pp. 106-116.
  • [19] Altıntaş, O. 1991. On a subclass of certain starlike functions with negative coefficient: Mathematica Japonica, Volume 36, pp. 489-495.
  • [20] Altıntaş, O., Irmak, H. and Srivastava, H. M. 1995. Fractional calculus and certain starlike functions with negative coefficients: Computers and Mathematics with Applications, Volume 30, pp. 9-16.
  • [21] Altıntaş, O., Özkan, Ö. and Srivistava, H. M. 2004. Neighbourhoods of a Certain Family of Multivalent Functions with Negative Coefficients: Computers and Mathematics with Applications, Volume 47, pp. 1667- 1672.
  • [22] Porwal, S. 2014. An application of a Poisson distribution series on certain analytic functions: Journal of Complex Analysis, Article ID 984135, pp. 1-3.
There are 22 citations in total.

Details

Other ID JA82JM93BG
Journal Section Research Article
Authors

Nizami Mustafa This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Mustafa, N. (2017). ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 247-257.
AMA Mustafa N. ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ. DEUFMD. January 2017;19(55):247-257.
Chicago Mustafa, Nizami. “ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 247-57.
EndNote Mustafa N (January 1, 2017) ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 247–257.
IEEE N. Mustafa, “ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ”, DEUFMD, vol. 19, no. 55, pp. 247–257, 2017.
ISNAD Mustafa, Nizami. “ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 247-257.
JAMA Mustafa N. ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ. DEUFMD. 2017;19:247–257.
MLA Mustafa, Nizami. “ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 247-5.
Vancouver Mustafa N. ANALİTİK FONKSİYONLARIN YENİ ALT SINIFLARININ KARAKTERİSTİK ÖZELLİKLERİ. DEUFMD. 2017;19(55):247-5.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.