BibTex RIS Cite

THERMODYNAMICS ANALYSIS FOR WASTE HEAT RECOVERY SYSTEMS IN A CEMENT INDUSTRY

Year 2016, Volume: 18 Issue: 53, 205 - 223, 01.05.2016

Abstract

Recently, application of energy and exergy analyses to new projects presents most important data in terms of first design of systems and economic analyses. Evaluation and interpretation of analyses reports make determine the place, size and reasons of energy losses, therefore enhances the efficiency of systems. This project aims to thermodynamically inspect and develop the effects of Waste Heat Recovery (WHR) system on energy efficiency in cement factories. According to results, for all system, exergy losses value and totally exergy efficiency are founded 5038.61 kW and 55.69%, respectively. These results will constitute important data in terms of design and economical while building and operating waste heat recycling power plants. Thus energy saving and effective energy usage, which have great importance today, will be possible

References

  • Engin T, Ari V.,Energy Auditing and Recovery for dry Type Cement Rotary Kiln Systems-A Case Study, Energy Conversion and Management, Cilt. 46, 2005, s.551–562.
  • Hasanbeigi A, Price L, Lu H, Lan W. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case Study of 16 Cement Plants, Energy, Cilt. 35, 2010, s.34613473.
  • Ino T. Kawasaki Plant Systems, Waste Heat Recovery Power Generation (WHRPG) for Cement Plants, Cement International Review, cilt. 8, 2010 s.36-45.
  • Khurana B, Banerjee R, Gaitonde U. Energy Balance and Cogeneration for Cement Plant, Applied Thermal Engineering, Cilt. 22, 2002, s.485–494.
  • Hasanbeigi A, Menke C, Therdyothin A. The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: The Case Study of Thai Cement Industry, Energy Policy, Cilt. 38, 2010, s.392–405.
  • Bundela PS, Chawla V. Sustainable Development through Waste Heat Recovery, American Journal of Environmental Sciences, Cilt. 6, 2010, s.83-89.
  • Wang J, Dai Y, Gao L. Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry, Applied Energy, Cilt. 86, 2009, s.941– 948.
  • Kabir G, Abubakar AI, El-Nafaty UA. Energy Audit and Conservation Opportunities for Pyroprocessing Unit of a Typical Dry Process Cement Plant, Energy, Cilt. 35, 2010, s.1237–1243.
  • Lopez L, Blanco JM, Bonilla JJ, Baezat S, Salat JM. Determination of Energy and Exergy of Waste Heat in the Industry of the Basque Country, Applied Thermal Engineering, Cilt. 18, 1998, s.187-197.
  • Mirolli MD. Ammonia-Water Based Thermal Conversion Technology: Applications in Waste Heat Recovery for the Cement Industry, Chief Technology Officer Recurrent Engineering, LLC, 2004.
  • Rasul MG, Widianto W, Mohanty B. Assessment of the Thermal Performance and Energy Conservation Opportunities of a Cement Industry in Indonesia, Applied Thermal Engineering, Cilt. 25, 2005, s.2950–2965.
  • Worrell E, Martin N, Price L. Potential for Energy Efficiency Improvement in the US Cement Industry, Energy, Cilt. 25, 2000, s.1189-1214.
  • Dinçer I. The Role of Exergy in Energy Policy Making, Energy Policy, Cilt. 30, 2002, s.137-149.
  • Gaggioli RA, Available Energy and Exergy, International Journal of Applied Thermodynamics, Cilt. 1, 1998, s.1-8.
  • Kotas TJ. The Exergy Method of Thermal Plant Analysis, Essex: Anchor Brendon Ltd., 1985.
  • Özgener O, Hepbaşlı A. Experimental Performance Analysis of a Solar Assisted Ground- Source Heat Pump Greenhouse Heating System, Energy and Buildings, Cilt. 37, 2005, s.101-110.
  • Krakow KI. Exergy Analysis: Dead-State Definition, ASHRAE Transactions, Cilt. 97, 1991, s.328-336.
  • Moran MJ, Engineering Thermodynamics in Mechanical Engineering Handbook, (Ed.) F. Kreith, B. Raton, 1999.
  • Özgener L, Özgener O. Parametric Study of the Effect of Reference State on Energy and Exergy Efficiencies of a Small Industrial Pasta Drying Process, International Journal of Exergy, Cilt. 6, No. 4, 2009, s.477-490.
  • Szargut J, Morris DR, Stewart FR. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, USA: Edwards Brothers Inc., 1998.
  • Özgener L. Exergoeconomic Analysis of Small Industrial Pasta Drying Systems, Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, Cilt. 221, No. 7, 2007, s.899-906.
  • Özgener L, Özgener O. Exergy Analysis of Industrial Pasta Drying Process, International Journal of Energy Research, Cilt. 30, 2006, s.1323-1335.
  • Özgener L, Hepbaşlı A, Dinçer I. Exergy Analysis of Two Geothermal District Heating Systems for Building Applications, Energy Conversion and Management, Cilt. 48, No. 4, 2007, s.1185-1192.
  • Özgener O, Hepbaşlı A. A Parametrical Study on the Energetic and Exergetic Assessment of a Solar Assisted Vertical Ground Source Heat Pump System Used for Heating a Greenhouse, Building and Environment, Cilt. 42, No. 1, 2007, s.11-24.
  • Özgener O, Hepbaşlı A. Exergoeconomic Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System, Applied Thermal Engineering, Cilt. 25, 2005, s.1459-1471.

ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ

Year 2016, Volume: 18 Issue: 53, 205 - 223, 01.05.2016

Abstract

Son yıllarda enerji ve ekserji analizinin yeni projelerde uygulanması, sistemlerin ilk dizaynı ve ekonomik analizlerinin yapılması açısından önemli veriler sunmaktadır. Analiz sonuçlarının değerlendirilmesi ve getirilen yorumlarla enerji kayıplarının yeri, büyüklüğü ve nedenleri saptanabilmekte, dolayısıyla sistemlerin verimleri arttırılabilmektedir. Bu proje ile çimento fabrikalarında WHR sisteminin enerji verimliliği üzerine olan etkisi ve bu sistemin termodinamik olarak incelenmesi, geliştirilmesi amaçlanmaktadır. Elde edilen sonuçlara göre tüm sistem için ekserji kaybı 5038,61 kW ve ekserji verimliliği ise % 55.69 olarak bulunmuştur. Elde edilen sonuçlar atık ısı geri kazanım santrallerin kurulmasında ve işletilmesinde dizayn ve ekonomik açıdan önemli bir veri teşkil edecektir. Böylece günümüzde çok büyük önem teşkil eden enerji tasarrufu ve enerjinin en verimli şekilde kullanılması sağlanabilecektir

References

  • Engin T, Ari V.,Energy Auditing and Recovery for dry Type Cement Rotary Kiln Systems-A Case Study, Energy Conversion and Management, Cilt. 46, 2005, s.551–562.
  • Hasanbeigi A, Price L, Lu H, Lan W. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case Study of 16 Cement Plants, Energy, Cilt. 35, 2010, s.34613473.
  • Ino T. Kawasaki Plant Systems, Waste Heat Recovery Power Generation (WHRPG) for Cement Plants, Cement International Review, cilt. 8, 2010 s.36-45.
  • Khurana B, Banerjee R, Gaitonde U. Energy Balance and Cogeneration for Cement Plant, Applied Thermal Engineering, Cilt. 22, 2002, s.485–494.
  • Hasanbeigi A, Menke C, Therdyothin A. The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: The Case Study of Thai Cement Industry, Energy Policy, Cilt. 38, 2010, s.392–405.
  • Bundela PS, Chawla V. Sustainable Development through Waste Heat Recovery, American Journal of Environmental Sciences, Cilt. 6, 2010, s.83-89.
  • Wang J, Dai Y, Gao L. Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry, Applied Energy, Cilt. 86, 2009, s.941– 948.
  • Kabir G, Abubakar AI, El-Nafaty UA. Energy Audit and Conservation Opportunities for Pyroprocessing Unit of a Typical Dry Process Cement Plant, Energy, Cilt. 35, 2010, s.1237–1243.
  • Lopez L, Blanco JM, Bonilla JJ, Baezat S, Salat JM. Determination of Energy and Exergy of Waste Heat in the Industry of the Basque Country, Applied Thermal Engineering, Cilt. 18, 1998, s.187-197.
  • Mirolli MD. Ammonia-Water Based Thermal Conversion Technology: Applications in Waste Heat Recovery for the Cement Industry, Chief Technology Officer Recurrent Engineering, LLC, 2004.
  • Rasul MG, Widianto W, Mohanty B. Assessment of the Thermal Performance and Energy Conservation Opportunities of a Cement Industry in Indonesia, Applied Thermal Engineering, Cilt. 25, 2005, s.2950–2965.
  • Worrell E, Martin N, Price L. Potential for Energy Efficiency Improvement in the US Cement Industry, Energy, Cilt. 25, 2000, s.1189-1214.
  • Dinçer I. The Role of Exergy in Energy Policy Making, Energy Policy, Cilt. 30, 2002, s.137-149.
  • Gaggioli RA, Available Energy and Exergy, International Journal of Applied Thermodynamics, Cilt. 1, 1998, s.1-8.
  • Kotas TJ. The Exergy Method of Thermal Plant Analysis, Essex: Anchor Brendon Ltd., 1985.
  • Özgener O, Hepbaşlı A. Experimental Performance Analysis of a Solar Assisted Ground- Source Heat Pump Greenhouse Heating System, Energy and Buildings, Cilt. 37, 2005, s.101-110.
  • Krakow KI. Exergy Analysis: Dead-State Definition, ASHRAE Transactions, Cilt. 97, 1991, s.328-336.
  • Moran MJ, Engineering Thermodynamics in Mechanical Engineering Handbook, (Ed.) F. Kreith, B. Raton, 1999.
  • Özgener L, Özgener O. Parametric Study of the Effect of Reference State on Energy and Exergy Efficiencies of a Small Industrial Pasta Drying Process, International Journal of Exergy, Cilt. 6, No. 4, 2009, s.477-490.
  • Szargut J, Morris DR, Stewart FR. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, USA: Edwards Brothers Inc., 1998.
  • Özgener L. Exergoeconomic Analysis of Small Industrial Pasta Drying Systems, Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, Cilt. 221, No. 7, 2007, s.899-906.
  • Özgener L, Özgener O. Exergy Analysis of Industrial Pasta Drying Process, International Journal of Energy Research, Cilt. 30, 2006, s.1323-1335.
  • Özgener L, Hepbaşlı A, Dinçer I. Exergy Analysis of Two Geothermal District Heating Systems for Building Applications, Energy Conversion and Management, Cilt. 48, No. 4, 2007, s.1185-1192.
  • Özgener O, Hepbaşlı A. A Parametrical Study on the Energetic and Exergetic Assessment of a Solar Assisted Vertical Ground Source Heat Pump System Used for Heating a Greenhouse, Building and Environment, Cilt. 42, No. 1, 2007, s.11-24.
  • Özgener O, Hepbaşlı A. Exergoeconomic Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System, Applied Thermal Engineering, Cilt. 25, 2005, s.1459-1471.
There are 25 citations in total.

Details

Other ID JA75FG56CB
Journal Section Research Article
Authors

Gökhan Tütüncü This is me

Önder Özgener This is me

Publication Date May 1, 2016
Published in Issue Year 2016 Volume: 18 Issue: 53

Cite

APA Tütüncü, G., & Özgener, Ö. (2016). ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(53), 205-223.
AMA Tütüncü G, Özgener Ö. ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. DEUFMD. May 2016;18(53):205-223.
Chicago Tütüncü, Gökhan, and Önder Özgener. “ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, no. 53 (May 2016): 205-23.
EndNote Tütüncü G, Özgener Ö (May 1, 2016) ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 53 205–223.
IEEE G. Tütüncü and Ö. Özgener, “ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ”, DEUFMD, vol. 18, no. 53, pp. 205–223, 2016.
ISNAD Tütüncü, Gökhan - Özgener, Önder. “ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/53 (May 2016), 205-223.
JAMA Tütüncü G, Özgener Ö. ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. DEUFMD. 2016;18:205–223.
MLA Tütüncü, Gökhan and Önder Özgener. “ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 18, no. 53, 2016, pp. 205-23.
Vancouver Tütüncü G, Özgener Ö. ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. DEUFMD. 2016;18(53):205-23.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.