Research Article
BibTex RIS Cite
Year 2020, Volume: 22 Issue: 64, 59 - 66, 24.01.2020
https://doi.org/10.21205/deufmd.2020226407

Abstract

References

  • 1- O’Neill, B. 1983. Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London.
  • 2- Milman, R.S., Parker, G.D. 1977. Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
  • 3- Walrave, J. 1995. Curves and Surfaces in Minkowski Space, Dissertation, K.U. Leuven, Fac. of Science, Leuven, 147p.
  • 4- Yılmaz, S. 2001. Spherical Indicators of Curves and Characterizations of Some Special Curves in Four Dimensional Lorentzian Space L^4, Dissertation, Dokuz Eylül University, İzmir
  • 5- Yılmaz, S., Turgut, M. 2008. On the Differential Geometry of the Curves in Minkowski Space-Time I, International Journal of Contemporary Mathematical Sciences Volume 3, pp. 1343-1349.
  • 6- Yılmaz, S., Özyılmaz, E., Turgut, M. 2009. On the Differential Geometry of the Curves in Minkowski Space-Time II, International Journal of Contemporary Mathematical Sciences Volume 3, pp. 53-55.
  • 7- Yılmaz, S., Özyılmaz, E., Yaylı, Y., Turgut, M. 2010. Tangent and Trinormal Spherical Images of a Time-Like Curve on the Pseudohyperbolic Space, Proceedings of the Estonian Academy of Sciences, Volume 59 No 3, pp. 216-224.
  • 8- Bonnor, W.B. 1969. Null Curves in Minkowski Space-Time, Tensor, Volume 20, pp. 229-242. Petrovic-Torgasev, M., Sucurovic, E. 2002. W-Curves in Minkowski Space-Time, Novi Sad Journal of Mathematics, Volume 32, No 2, pp. 55-65. Lopez, R. 2010. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, Volume 3, No 2, pp. 67-101.9- Ratcliffe, J.G. 2006. Foundations of Hyperbolic Manifolds, Springer Science-Business Media, LLC, New York, pp. 68-72.
  • 10- Monterde, J. 2007. Curves with Constant Curvature Ratios, Boletin de la Sociedad Matematica Mexicana,, Volume 3, pp. 177-186.
  • 11- Öztürk, G., Arslan, K., Hacısalihoğlu H.H. 2008. A Characterization of CCR-Curves in R^m, Proceedings of the Estonian Academy of Sciences, Volume 57, pp. 217-224.
  • 12-İlarslan, K., Boyacıoğlu, Ö. 2007. Position Vectors of a Spacelike W-Curve in Minkowski 3-Space E_1^3, Volume 44, No 3, pp. 429-438. Camcı, Ç., İlarslan, K., Sucurovic, E. 2003. On Pseudohyperbolic Curves in Minkowski Space-Time, Turkish Journal of Mathematics, Volume 27, pp. 315-328.

The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time

Year 2020, Volume: 22 Issue: 64, 59 - 66, 24.01.2020
https://doi.org/10.21205/deufmd.2020226407

Abstract

We know that W-curve is a curve
which has constant Frenet curvatures. In this study, firstly, we have investigated
the principal normal and binormal spherical images of a timelike W-curve on
pseudohyperbolic space
 in Minkowski space-time . Besides, the binormal spherical image
of the timelike W-curve is a spacelike curve which lies on pseudohyperbolic
space
 Hence, we have obtained the Frenet-Serret
invariants of the mentioned image curve in terms of the invariants of the timelike
W-curve in the same space. Finally, we have given some characterizations of the
spherical image in the case of being helix for the timelike W-curve in
Minkowski space-time
.

References

  • 1- O’Neill, B. 1983. Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London.
  • 2- Milman, R.S., Parker, G.D. 1977. Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
  • 3- Walrave, J. 1995. Curves and Surfaces in Minkowski Space, Dissertation, K.U. Leuven, Fac. of Science, Leuven, 147p.
  • 4- Yılmaz, S. 2001. Spherical Indicators of Curves and Characterizations of Some Special Curves in Four Dimensional Lorentzian Space L^4, Dissertation, Dokuz Eylül University, İzmir
  • 5- Yılmaz, S., Turgut, M. 2008. On the Differential Geometry of the Curves in Minkowski Space-Time I, International Journal of Contemporary Mathematical Sciences Volume 3, pp. 1343-1349.
  • 6- Yılmaz, S., Özyılmaz, E., Turgut, M. 2009. On the Differential Geometry of the Curves in Minkowski Space-Time II, International Journal of Contemporary Mathematical Sciences Volume 3, pp. 53-55.
  • 7- Yılmaz, S., Özyılmaz, E., Yaylı, Y., Turgut, M. 2010. Tangent and Trinormal Spherical Images of a Time-Like Curve on the Pseudohyperbolic Space, Proceedings of the Estonian Academy of Sciences, Volume 59 No 3, pp. 216-224.
  • 8- Bonnor, W.B. 1969. Null Curves in Minkowski Space-Time, Tensor, Volume 20, pp. 229-242. Petrovic-Torgasev, M., Sucurovic, E. 2002. W-Curves in Minkowski Space-Time, Novi Sad Journal of Mathematics, Volume 32, No 2, pp. 55-65. Lopez, R. 2010. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, Volume 3, No 2, pp. 67-101.9- Ratcliffe, J.G. 2006. Foundations of Hyperbolic Manifolds, Springer Science-Business Media, LLC, New York, pp. 68-72.
  • 10- Monterde, J. 2007. Curves with Constant Curvature Ratios, Boletin de la Sociedad Matematica Mexicana,, Volume 3, pp. 177-186.
  • 11- Öztürk, G., Arslan, K., Hacısalihoğlu H.H. 2008. A Characterization of CCR-Curves in R^m, Proceedings of the Estonian Academy of Sciences, Volume 57, pp. 217-224.
  • 12-İlarslan, K., Boyacıoğlu, Ö. 2007. Position Vectors of a Spacelike W-Curve in Minkowski 3-Space E_1^3, Volume 44, No 3, pp. 429-438. Camcı, Ç., İlarslan, K., Sucurovic, E. 2003. On Pseudohyperbolic Curves in Minkowski Space-Time, Turkish Journal of Mathematics, Volume 27, pp. 315-328.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Süha Yılmaz 0000-0001-5948-0588

Publication Date January 24, 2020
Published in Issue Year 2020 Volume: 22 Issue: 64

Cite

APA Yılmaz, S. (2020). The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(64), 59-66. https://doi.org/10.21205/deufmd.2020226407
AMA Yılmaz S. The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time. DEUFMD. January 2020;22(64):59-66. doi:10.21205/deufmd.2020226407
Chicago Yılmaz, Süha. “The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 64 (January 2020): 59-66. https://doi.org/10.21205/deufmd.2020226407.
EndNote Yılmaz S (January 1, 2020) The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 64 59–66.
IEEE S. Yılmaz, “The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time”, DEUFMD, vol. 22, no. 64, pp. 59–66, 2020, doi: 10.21205/deufmd.2020226407.
ISNAD Yılmaz, Süha. “The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (January 2020), 59-66. https://doi.org/10.21205/deufmd.2020226407.
JAMA Yılmaz S. The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time. DEUFMD. 2020;22:59–66.
MLA Yılmaz, Süha. “The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 64, 2020, pp. 59-66, doi:10.21205/deufmd.2020226407.
Vancouver Yılmaz S. The Characterizations For The Spherical Images of Timelike W-Curves in Minkowski Space-Time. DEUFMD. 2020;22(64):59-66.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.