Research Article
BibTex RIS Cite

Comparison of Corrosion Behavior of Steel Wire Ropes in Different Types Used in Cranes

Year 2020, Volume: 22 Issue: 64, 179 - 186, 24.01.2020
https://doi.org/10.21205/deufmd.2020226418

Abstract

The aim of
this study is to investigate the behavior after exposure to corrosion of
different types of hoisting ropes used in cranes. For this, hempen and steel
core 6x19 Standard, 8x19 Seale and 6x36 Warrington Seale group ropes are
examined. The ropes are applied rapid aging test in aging test chamber for one
month according to ASTM B117 standard. The aging test is made for 3 different
process with 24 hours cycle and 30 days period process.
In each
aging process, temperature and time parameters were changed and effects of
corrosion conditions were investigated and comparative results were given. Failures
of the ropes are visually  determined after
aging tests and effects of corrosion for each process are evaluated examining
mass changes before and after aging test. In addition, the effect of corrosion
damage on the mechanical properties of the rope was investigated.

References

  • Demirsoy, M. 1999. Transport Tekniği Kaldırma Makinaları. Cilt 1. Birsen Yayınevi, İstanbul, s. 6-22.
  • Doruk, M. 2014. Metalik Malzemeler ve Korozyon. Korozyon Derneği Yayınları, Ankara, s. 3-5.
  • Deflorian, F., Rossi, S., Tancon, B. ve Bonora P. L. 2004. Corrosion Behaviour of Steel Ropes for Snow and Rockfall Barriers, Corrosion Engineering, Science and Technology, Cilt. 39, 3, s. 250-254. DOI: 10.1179/147842204X2853
  • Mallick, M., Mitra, S. K. ve Basak, D. 2014. Corrosion Behaviour of FLC Wire Ropes, International Journal of Science and Research, Cilt. 3, 8, s. 816-819.
  • Meknassi, M., Tijani, A., Mouhib, N. ve El Ghorba, M. 2016. Experimental Study on Corrosion of Wire Rope Strands Under Sulfuric Acid Attack, The International Journal of Engineering and Science, Cilt. 5, 6, s. 40-45.
  • Meknassi, M., Mouhib, N., Tijani, A. ve El Ghorba, M. 2015. Experimental Study of Wires Extracted from Steel Wire Rope and Exposed to Sulfuric Acid, International Journal of Mechanical Engineering, Cilt. 3, 11, s. 47-53.
  • Molnár, V., Fedorko, G., Krešák, J., Peterka, P. ve Fabianová, J. 2017. The Influence of Corrosion on The Life of Steel Ropes and Prediction of Their Decommissioning, Engineering Failure Analysis, Cilt. 74, s. 119–132. DOI:10.1016/j.engfailanal.2017.01.010
  • Songquan, W., Dekun, Z., Dagang, W. ve Zefeng Z. 2011. Electrochemical Corrosion Behavior of Steel Wires in a Coalmine with a Corrosive Medium, Mining Science and Technology (China), Cilt. 21, s. 71-76. DOI: 10.1016/j.mstc.2010.12.003
  • Kim, S. H., Ham, S. H. Ve Kwon, J. D. 2014. Bending Fatigue Characteristics of Corroded Wire Ropes, Journal of Mechanical Science and Technology, Cilt. 28, 7, s. 2853-2859. DOI: 10.1007/s12206-014-0639-8
  • Kurashov, D. A., Barsukov, V. K., Barsukov, E. V., Kadochnikov, N. P., Makarova, E. V., Svidovskii, F. G ve Gorbatov, E. K. 2008. Effect of Various Lubricants on Corrosion Resistance of Steel Ropes and on The Resistance of Organic Cores to Biological Attack, Metallurgist, Cilt. 52, s. 111-115.
  • Gorbatov, E. K. vd. 2007. Steel Rope with Longer Service Life and Improved Quality, Metallurgist, Cilt. 51, s. 279-283.
  • Peng, P. C., Wang, C. Y. 2015. Use of Gamma Rays in The Inspection of Steel Wire Ropes in Suspension Bridges, NDT&E International, Cilt. 75, s. 80-86. DOI: 10.1016/j.ndteint.2015.06.006
  • Loeve, A. J., Krijger, T., Mugge, W., Breedveld, P., Dodou, D. ve Dankelman, J. 2014. Static Friction of Stainless Steel Wire Rope-rubber Contacts, Wear, Cilt. 319, s. 27-37. DOI: 10.1016/j.wear.2014.07.005
  • Torkar, M., Arzensek, B. 2002. Failure of Crane Wire Rope, Engineering Failure Analysis, Cilt. 9, s. 227-233.
  • Kresak, J., Kropuch, S. ve Peterka, P. 2012. The Anchors of Steel Wire Ropes, Testing Methods and Their Results, Metalurgija, Cilt. 51, 4, s. 485-488.
  • Singh, V., Lloyd, G. M. ve Wang, M. L. (2004). Effects of temperature and corrosion thickness and composition on magnetic measurements of structural steel wires. NDT&E International, 37, 525-538.
  • Díaz, B., Freire, L., Nóvoa, X. R. ve Pérez, M. C. (2009). Electrochemical behaviour of high strength steel wires in the presence of chlorides. Electrochimica Acta, 54, 5190-5198.
  • Shih, C. C., Shih, C. M., Su, Y. Y. ve Lin, S. J. (2005). Galvanic current induced by heterogeneous structures on stainless steel wire. Corrosion Science, 47, 2199-2212.
  • McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47, 3202-3215.
  • Baoyu, Z., Xinge, G., Xiaohua, C., Wenzhi, Y., Ziming, C., Wei, H., Fujun, S. ve Honggang, S. (2016). Improvement of the corrosion resistance of steel wires by manufacturing continuous bulk metallic glass-coated steel wires. Rare Metal Materials and Engineering, 45, 11, 2818-2822.
  • El-Amoush, A. S. ve Al-Duheisat, S. A. (2018). Cathodic polarization behavior of the structural steel wires under different prestressing conditions. Journal of Materials Research and Technology, 7, 1, 1-6.
  • Gabe, D. R. (2005). The centenary of Tafel’s equation. Transactions of The Institute of Metal Finishing, 83, 3, 121-124.
  • ASTM B117 Standard Practice for Operating Salt Spray (Fog) Apparatus.
  • Karasu, H.F., Demirsoy, M. 2016. Yük Taşıma Halatlarının Korozyon Davranışlarının İncelenmesi. XIV. Uluslararası Korozyon Sempozyumu, 5-7 Ekim, Bayburt, s. 152-156.
  • http:// http://www.celsancelik.com/urun-kategorileri/celik-halatlar (Erişim Tarihi: 01.08.2018).

Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması

Year 2020, Volume: 22 Issue: 64, 179 - 186, 24.01.2020
https://doi.org/10.21205/deufmd.2020226418

Abstract

Bu çalışmada, krenlerde kullanılan
farklı tipteki yük taşıma halatlarının korozyona maruz bırakıldıktan sonraki
davranışları incelenmiştir. Bunun için 6x19 Standart, 8x19 Seale ve 6x36
Warrington Seale halat gruplarından kendir ve çelik özlü halatlar alınmıştır.
Halatlar ASTM B117 standardına uygun olarak yaşlandırma test kabininde her bir
yaşlandırma prosesi için bir aylık sürede olmak üzere hızlı yaşlandırma testine
tabi tutulmuştur. 24 saatlik döngülerle 30 periyotluk 3 farklı proses takip
edilmiştir. Her bir yaşlandırma işleminde sıcaklık ve zaman parametresi
değiştirilerek halatların  korozyona
maruz kalma şartlarının etkisi incelenmiş ve karşılaştırmalı olarak sonuçlar
verilmiştir. Yapılan yaşlandırma işlemi sonucunda halatlarda oluşan hasarlar
gözle muayene ile belirlenmiş ve her bir proses için halatların yaşlandırma
öncesi ve sonrası kütle değişimleri incelenerek korozyonun etkileri
değerlendirilmiştir. Ayrıca, halatta meydana gelen korozyon hasarının mekanik
özelliklere olan etkisi incelenmiştir.

References

  • Demirsoy, M. 1999. Transport Tekniği Kaldırma Makinaları. Cilt 1. Birsen Yayınevi, İstanbul, s. 6-22.
  • Doruk, M. 2014. Metalik Malzemeler ve Korozyon. Korozyon Derneği Yayınları, Ankara, s. 3-5.
  • Deflorian, F., Rossi, S., Tancon, B. ve Bonora P. L. 2004. Corrosion Behaviour of Steel Ropes for Snow and Rockfall Barriers, Corrosion Engineering, Science and Technology, Cilt. 39, 3, s. 250-254. DOI: 10.1179/147842204X2853
  • Mallick, M., Mitra, S. K. ve Basak, D. 2014. Corrosion Behaviour of FLC Wire Ropes, International Journal of Science and Research, Cilt. 3, 8, s. 816-819.
  • Meknassi, M., Tijani, A., Mouhib, N. ve El Ghorba, M. 2016. Experimental Study on Corrosion of Wire Rope Strands Under Sulfuric Acid Attack, The International Journal of Engineering and Science, Cilt. 5, 6, s. 40-45.
  • Meknassi, M., Mouhib, N., Tijani, A. ve El Ghorba, M. 2015. Experimental Study of Wires Extracted from Steel Wire Rope and Exposed to Sulfuric Acid, International Journal of Mechanical Engineering, Cilt. 3, 11, s. 47-53.
  • Molnár, V., Fedorko, G., Krešák, J., Peterka, P. ve Fabianová, J. 2017. The Influence of Corrosion on The Life of Steel Ropes and Prediction of Their Decommissioning, Engineering Failure Analysis, Cilt. 74, s. 119–132. DOI:10.1016/j.engfailanal.2017.01.010
  • Songquan, W., Dekun, Z., Dagang, W. ve Zefeng Z. 2011. Electrochemical Corrosion Behavior of Steel Wires in a Coalmine with a Corrosive Medium, Mining Science and Technology (China), Cilt. 21, s. 71-76. DOI: 10.1016/j.mstc.2010.12.003
  • Kim, S. H., Ham, S. H. Ve Kwon, J. D. 2014. Bending Fatigue Characteristics of Corroded Wire Ropes, Journal of Mechanical Science and Technology, Cilt. 28, 7, s. 2853-2859. DOI: 10.1007/s12206-014-0639-8
  • Kurashov, D. A., Barsukov, V. K., Barsukov, E. V., Kadochnikov, N. P., Makarova, E. V., Svidovskii, F. G ve Gorbatov, E. K. 2008. Effect of Various Lubricants on Corrosion Resistance of Steel Ropes and on The Resistance of Organic Cores to Biological Attack, Metallurgist, Cilt. 52, s. 111-115.
  • Gorbatov, E. K. vd. 2007. Steel Rope with Longer Service Life and Improved Quality, Metallurgist, Cilt. 51, s. 279-283.
  • Peng, P. C., Wang, C. Y. 2015. Use of Gamma Rays in The Inspection of Steel Wire Ropes in Suspension Bridges, NDT&E International, Cilt. 75, s. 80-86. DOI: 10.1016/j.ndteint.2015.06.006
  • Loeve, A. J., Krijger, T., Mugge, W., Breedveld, P., Dodou, D. ve Dankelman, J. 2014. Static Friction of Stainless Steel Wire Rope-rubber Contacts, Wear, Cilt. 319, s. 27-37. DOI: 10.1016/j.wear.2014.07.005
  • Torkar, M., Arzensek, B. 2002. Failure of Crane Wire Rope, Engineering Failure Analysis, Cilt. 9, s. 227-233.
  • Kresak, J., Kropuch, S. ve Peterka, P. 2012. The Anchors of Steel Wire Ropes, Testing Methods and Their Results, Metalurgija, Cilt. 51, 4, s. 485-488.
  • Singh, V., Lloyd, G. M. ve Wang, M. L. (2004). Effects of temperature and corrosion thickness and composition on magnetic measurements of structural steel wires. NDT&E International, 37, 525-538.
  • Díaz, B., Freire, L., Nóvoa, X. R. ve Pérez, M. C. (2009). Electrochemical behaviour of high strength steel wires in the presence of chlorides. Electrochimica Acta, 54, 5190-5198.
  • Shih, C. C., Shih, C. M., Su, Y. Y. ve Lin, S. J. (2005). Galvanic current induced by heterogeneous structures on stainless steel wire. Corrosion Science, 47, 2199-2212.
  • McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47, 3202-3215.
  • Baoyu, Z., Xinge, G., Xiaohua, C., Wenzhi, Y., Ziming, C., Wei, H., Fujun, S. ve Honggang, S. (2016). Improvement of the corrosion resistance of steel wires by manufacturing continuous bulk metallic glass-coated steel wires. Rare Metal Materials and Engineering, 45, 11, 2818-2822.
  • El-Amoush, A. S. ve Al-Duheisat, S. A. (2018). Cathodic polarization behavior of the structural steel wires under different prestressing conditions. Journal of Materials Research and Technology, 7, 1, 1-6.
  • Gabe, D. R. (2005). The centenary of Tafel’s equation. Transactions of The Institute of Metal Finishing, 83, 3, 121-124.
  • ASTM B117 Standard Practice for Operating Salt Spray (Fog) Apparatus.
  • Karasu, H.F., Demirsoy, M. 2016. Yük Taşıma Halatlarının Korozyon Davranışlarının İncelenmesi. XIV. Uluslararası Korozyon Sempozyumu, 5-7 Ekim, Bayburt, s. 152-156.
  • http:// http://www.celsancelik.com/urun-kategorileri/celik-halatlar (Erişim Tarihi: 01.08.2018).
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Haşim Fırat Karasu

Mine Demirsoy 0000-0001-7895-2229

Publication Date January 24, 2020
Published in Issue Year 2020 Volume: 22 Issue: 64

Cite

APA Karasu, H. F., & Demirsoy, M. (2020). Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(64), 179-186. https://doi.org/10.21205/deufmd.2020226418
AMA Karasu HF, Demirsoy M. Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması. DEUFMD. January 2020;22(64):179-186. doi:10.21205/deufmd.2020226418
Chicago Karasu, Haşim Fırat, and Mine Demirsoy. “Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 64 (January 2020): 179-86. https://doi.org/10.21205/deufmd.2020226418.
EndNote Karasu HF, Demirsoy M (January 1, 2020) Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 64 179–186.
IEEE H. F. Karasu and M. Demirsoy, “Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması”, DEUFMD, vol. 22, no. 64, pp. 179–186, 2020, doi: 10.21205/deufmd.2020226418.
ISNAD Karasu, Haşim Fırat - Demirsoy, Mine. “Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (January 2020), 179-186. https://doi.org/10.21205/deufmd.2020226418.
JAMA Karasu HF, Demirsoy M. Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması. DEUFMD. 2020;22:179–186.
MLA Karasu, Haşim Fırat and Mine Demirsoy. “Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 64, 2020, pp. 179-86, doi:10.21205/deufmd.2020226418.
Vancouver Karasu HF, Demirsoy M. Krenlerde Kullanılan Farklı Tiplerdeki Çelik Tel Halatların Korozyon Davranışlarının Karşılaştırılması. DEUFMD. 2020;22(64):179-86.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.