Research Article
BibTex RIS Cite

Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates

Year 2020, Volume: 22 Issue: 64, 271 - 276, 24.01.2020
https://doi.org/10.21205/deufmd.2020226426

Abstract

Composite materials are exposed to
various loading speeds when considering the application areas. Understanding
how strain rates affect the behavior of composite materials and estimating this
behavior constitute one of the important work areas. In this work, glass fiber
reinforced epoxy composites were produced and their mechanical behaviour under
various strain rates (2.5 mm/min, 5 mm/min and 10 mm/min) was investigated.
Strain rates was based on crosshead speed. Composite plates were produced by
VARIM (Vacuum Assisted Resin Infusion Method). The samples were cut according
to ASTM standards and then three-point bending test was applied to understand
flexural behaviour of glass fiber reinforced epoxy composites. Composite plates
were prepared as three different fiber orientations (0°, 45°, 90°) and the
effect of different strain rates on different fiber orientations was
investigated. As a result, as strain rate increases, the flexural stress
increases and there is no meaningful change in the modulus of elasticity and
deflection. In addition, the most affected fiber orientation is 45° fiber
orientation for flexural stress.

References

  • 1. Tong, L., Mouritz, A.P., and Bannister M.K. 2002. 3D Fibre Reinforced Polymer Composites. Chapter 1- Introduction. Elsevier Science, pp.1-12.
  • 2. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., ... & Triantafillou, T. C. 2002. Fiber-reinforced polymer composites for construction—State-of-the-art review. Journal of composites for construction, 6(2), 73-87.
  • 3. Saheb, D. N., & Jog, J. P. 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), 351-363.
  • 4. Zheng, Y. Z., Wang, W. W., Mosalam, K. M., & Zhu, Z. F. 2018. Mechanical behavior of ultra-high toughness cementitious composite strengthened with fiber reinforced polymer grid. Composite Structures, 184, 1-10.
  • 5. Jacob, G. C., Starbuck, J. M., Fellers, J. F., Simunovic, S., & Boeman, R. G. 2004. Strain rate effects on the mechanical properties of polymer composite materials. Journal of Applied Polymer Science, 94(1), 296-301.
  • 6. Dastoorian, F., & Tajvidi, M. 2008. Influence of strain rate on the flexural properties of a wood flour/HDPE composite. Journal of Reinforced Plastics and Composites, 27(16-17), 1701-1708.
  • 7. Okoli, O. I., & Smith, G. F. 2000. The effect of strain rate and fibre content on the Poisson’s ratio of glass/epoxy composites. Composite Structures, 48(1-3), 157-161.
  • 8. Gurusideswar, S., Srinivasan, N., Velmurugan, R., & Gupta, N. K. 2017. Tensile response of epoxy and glass/epoxy composites at low and medium strain rate regimes. Procedia engineering, 173, 686-693.
  • 9. Perogamvros, N., Mitropoulos, T., & Lampeas, G. 2016. Drop tower adaptation for medium strain rate tensile testing. Experimental Mechanics, 56(3), 419-436.
  • 10. Ou, Y., Zhu, D., Zhang, H., Huang, L., Yao, Y., Li, G., & Mobasher, B. 2016. Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (GFRP) composite under varying strain rates and temperatures. Polymers, 8(5), 196.
  • 11. Naresh, K., Shankar, K., Rao, B. S., & Velmurugan, R. 2016. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites. Composites Part B: Engineering, 100, 125-135.
  • 12. Li, X., Yan, Y., Guo, L., & Xu, C. 2016. Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254-264.
  • 13. Okoli, O. I., & Smith, G. F. 1995. Overcoming inertial problems in the high strain rate testing of a glass/epoxy composite. ANTEC'95., 2, 2998-3002.
  • 14. Jacob, G. C., Starbuck, J. M., Fellers, J. F., Simunovic, S., & Boeman, R. G. 2004. Strain rate effects on the mechanical properties of polymer composite materials. Journal of Applied Polymer Science, 94(1), 296-301.
  • 15. Adem, E., Didwania, M., Reddy, G. M., & Koricho, E. G. 2015. Experimental Analysis of E-Glass/Epoxy & E-Glass/polyester Composites for Auto Body Panel. American International Journal of Research in Science, Technology, Engineering & Mathematics, 10(4), 377-383.

Cam Fiber Takviyeli Epoksi Kompozitleri Farklı Yükleme Hızlarında Eğilme Özellikleri

Year 2020, Volume: 22 Issue: 64, 271 - 276, 24.01.2020
https://doi.org/10.21205/deufmd.2020226426

Abstract

Kompozit malzemeler, uygulama
alanları göz önüne alındığında çeşitli yükleme hızlarına maruz kalmaktadırlar.  Farklı 
yükleme hızlarının kompozit malzemelerin davranışını nasıl etkilediğini
anlamak ve bu davranışı tahmin edebilmek önemli çalışma alanlarından birini
oluşturmaktadır. Bu çalışmada, cam elyaf takviyeli epoksi kompozitler üretilmiş
ve çeşitli yükleme hızları  altında (2.5
mm/dak, 5 mm/dak ve 10 mm/dak) mekanik davranışları incelenmiştir. Yükleme hızı
olarak piston başlığı hızı baz alınmıştır. Kompozit plakalar VARIM (Vakum
Destekli Reçine İnfüzyon Metodu) ile üretilmiştir. Numuneler ASTM standartlarına
göre kesilmiş ve cam elyaf takviyeli epoksi kompozitlerin eğilme davranışını
anlamak için üç nokta eğilme deneyi uygulanmıştır. Kompozit plakalar, üç farklı
elyaf oryantasyonunda (0 °, 45 °, 90 °) hazırlanmış ve belirlenen yükleme
hızlarının bu elyaf oryantasyonları üzerindeki etkisi araştırılmıştır. Sonuç
olarak, yükleme hızı arttıkça, eğilme gerilmesi artmış fakat elastisite modülü
ve çökme sonuçlarında anlamlı bir değişiklik gözlemlenmemiştir. Ek olarak,
eğilme gerilmesi için en çok etkilenen elyaf oryantasyonun 45° elyaf
oryantasyonu olduğu tespit edilmiştir.

References

  • 1. Tong, L., Mouritz, A.P., and Bannister M.K. 2002. 3D Fibre Reinforced Polymer Composites. Chapter 1- Introduction. Elsevier Science, pp.1-12.
  • 2. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., ... & Triantafillou, T. C. 2002. Fiber-reinforced polymer composites for construction—State-of-the-art review. Journal of composites for construction, 6(2), 73-87.
  • 3. Saheb, D. N., & Jog, J. P. 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), 351-363.
  • 4. Zheng, Y. Z., Wang, W. W., Mosalam, K. M., & Zhu, Z. F. 2018. Mechanical behavior of ultra-high toughness cementitious composite strengthened with fiber reinforced polymer grid. Composite Structures, 184, 1-10.
  • 5. Jacob, G. C., Starbuck, J. M., Fellers, J. F., Simunovic, S., & Boeman, R. G. 2004. Strain rate effects on the mechanical properties of polymer composite materials. Journal of Applied Polymer Science, 94(1), 296-301.
  • 6. Dastoorian, F., & Tajvidi, M. 2008. Influence of strain rate on the flexural properties of a wood flour/HDPE composite. Journal of Reinforced Plastics and Composites, 27(16-17), 1701-1708.
  • 7. Okoli, O. I., & Smith, G. F. 2000. The effect of strain rate and fibre content on the Poisson’s ratio of glass/epoxy composites. Composite Structures, 48(1-3), 157-161.
  • 8. Gurusideswar, S., Srinivasan, N., Velmurugan, R., & Gupta, N. K. 2017. Tensile response of epoxy and glass/epoxy composites at low and medium strain rate regimes. Procedia engineering, 173, 686-693.
  • 9. Perogamvros, N., Mitropoulos, T., & Lampeas, G. 2016. Drop tower adaptation for medium strain rate tensile testing. Experimental Mechanics, 56(3), 419-436.
  • 10. Ou, Y., Zhu, D., Zhang, H., Huang, L., Yao, Y., Li, G., & Mobasher, B. 2016. Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (GFRP) composite under varying strain rates and temperatures. Polymers, 8(5), 196.
  • 11. Naresh, K., Shankar, K., Rao, B. S., & Velmurugan, R. 2016. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites. Composites Part B: Engineering, 100, 125-135.
  • 12. Li, X., Yan, Y., Guo, L., & Xu, C. 2016. Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254-264.
  • 13. Okoli, O. I., & Smith, G. F. 1995. Overcoming inertial problems in the high strain rate testing of a glass/epoxy composite. ANTEC'95., 2, 2998-3002.
  • 14. Jacob, G. C., Starbuck, J. M., Fellers, J. F., Simunovic, S., & Boeman, R. G. 2004. Strain rate effects on the mechanical properties of polymer composite materials. Journal of Applied Polymer Science, 94(1), 296-301.
  • 15. Adem, E., Didwania, M., Reddy, G. M., & Koricho, E. G. 2015. Experimental Analysis of E-Glass/Epoxy & E-Glass/polyester Composites for Auto Body Panel. American International Journal of Research in Science, Technology, Engineering & Mathematics, 10(4), 377-383.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Gökhan Demircan 0000-0002-9579-6878

Mustafa Özen 0000-0002-0282-9387

Murat Kısa 0000-0001-7015-2198

Publication Date January 24, 2020
Published in Issue Year 2020 Volume: 22 Issue: 64

Cite

APA Demircan, G., Özen, M., & Kısa, M. (2020). Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(64), 271-276. https://doi.org/10.21205/deufmd.2020226426
AMA Demircan G, Özen M, Kısa M. Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates. DEUFMD. January 2020;22(64):271-276. doi:10.21205/deufmd.2020226426
Chicago Demircan, Gökhan, Mustafa Özen, and Murat Kısa. “Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 64 (January 2020): 271-76. https://doi.org/10.21205/deufmd.2020226426.
EndNote Demircan G, Özen M, Kısa M (January 1, 2020) Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 64 271–276.
IEEE G. Demircan, M. Özen, and M. Kısa, “Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates”, DEUFMD, vol. 22, no. 64, pp. 271–276, 2020, doi: 10.21205/deufmd.2020226426.
ISNAD Demircan, Gökhan et al. “Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (January 2020), 271-276. https://doi.org/10.21205/deufmd.2020226426.
JAMA Demircan G, Özen M, Kısa M. Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates. DEUFMD. 2020;22:271–276.
MLA Demircan, Gökhan et al. “Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 64, 2020, pp. 271-6, doi:10.21205/deufmd.2020226426.
Vancouver Demircan G, Özen M, Kısa M. Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates. DEUFMD. 2020;22(64):271-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.