Research Article
BibTex RIS Cite

Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi

Year 2021, Volume: 23 Issue: 68, 399 - 412, 24.05.2021
https://doi.org/10.21205/deufmd.2021236805

Abstract

Bu çalışmada, Türkiye Bina Deprem Yönetmeliği (TBDY-2018) ve Çelik Yapıların Tasarım, Hesap ve Yapım Esasları (ÇYTHYE-2018) göz önüne alınarak boyutlandırılan X, ters-V ve parçalı-X tipi çapraz düzenine sahip süneklik düzeyi yüksek merkezi çaprazlı çelik çerçevelerin (MÇÇÇ’lerin) dinamik performansları araştırılarak karşılaştırılmıştır. Bu amaçla, farklı kat sayılı, farklı aks aralıklı ve farklı çapraz düzenine sahip toplam 18 adet MÇÇÇ’nin Opensees programı kullanılarak doğrusal olmayan statik itme analizleri gerçekleştirilmiştir. Analiz sonuçlarında, her bir MÇÇÇ’nin tonajları, elastik rijitlikleri, elastik kesme kuvvetleri ve süneklik kapasiteleri raporlanmıştır. Elde edilen sonuçlar, çerçeve açıklığı arttıkça MÇÇÇ’lerin tonajlarının, elastik rijitliklerinin ve elastik taban kesme kuvvetlerinin arttığını fakat süneklik kapasitelerinin düştüğünü göstermektedir. Ayrıca, parçalı-X tipi çapraz düzenine sahip sünekliği yüksek MÇÇÇ’lerin hem tonaj hem de dinamik performans açısından X ve ters-V tipi çapraz düzenine sahip MÇÇÇ’lere kıyasla daha avantajlı olduğu tespit edilmiştir.

References

  • Bruneau, M., Uang, C.M., Sabelli R. 2011. Ductile Design of Steel Structures. McGraw Hill Professional, 928s.
  • Gioncu, V., Mazzolani, F.M. 2014. Seismic Design of Steel Structures. CRC Press, Boca Raton, 487s.
  • Workman, G. 1969. The inelastic behavior of multistory braced frame structures subjected to earthquake excitation, University of Michigan at Ann Arbor UMEE 69R1, 159s.
  • Hanson, R. D. and Goel, Subhash C. 1972. Seismic behavior of multistory braced steel frames, Center for Cold-Formed Steel Structures Library. 161, 69s.
  • Bazan, E., Rosenblueth, E. 1974. Seismic Response of One-Story X-Braced Frames, Journal of the Structural Division, ASCE, vol. 100, ST2, s. 489-493.
  • Anderson, J.C. 1975. Seismic Behavior of K-Braced Framing Systems", Journal of the Structural Division, ASCE, vol. 101, ST10, s. 2147-2159.
  • Maison, BF, Popov, E.P. 1980. Cyclic response prediction for braced steel frames. Journal of Structural Engineering, ASCE, 106(7): s. 1401–1416.
  • Astaneh-Asl, A., Goel, S.C. 1984. Cyclic in-plane buckling of double angle bracing, Journal of Structural Engineering, ASCE, 110 (9), s. 2036–2055. DOI: 10.1061/(ASCE)0733-9445(1984)110:9(2036).
  • A.Astaneh-Asl, S.C. Goel, R.D. Hanson, Cyclic out-of-plane buckling of double-angle bracing, Journal of Structural Engineering, ASCE, 111 (5) (1985) 1135–1153. DOI: 10.1061/(ASCE)0733-9445(1985)111:5(1135).
  • Goel, S.C., El-Tayem, A.A. 1986. Cyclic Load Behavior of Angle X-Bracing, Journal of Structural Engineering, ASCE,112 (11) s. 2528-2539. DOI: 10.1061/(ASCE)0733-9445(1986)112:11(2528).
  • Khatib, I.F., Mahin, S.A. Pister, K.S. 1988. Seismic Behavior of Concentrically Braced Steel Frames Earthquake Engineering Research Center, University of California.
  • Fukuta, T. Nishiyama, I. Yamanouchi, H. Kato, B. 1989. Seismic performance of steel frames with inverted V braces, Journal of Structural Engineering, ASCE 115 (8) s. 2016–2028. DOI: 10.1061/(ASCE)0733-9445(1989)115:8(2016).
  • Yamanouchi, H., Midorikawa, M., Nishiyama, I., Watabe, M. 1989. Seismic behavior of full-scale concentrically braced steel building structure. Journal of Structural Engineering, ASCE, 115(8), s. 1917–1929. DOI: 10.1061/(ASCE)0733-9445(1989)115:8(1917).
  • Nakashima, M., Wakabayashi, M. 1992. Analysis and design of steel braces and braced frames in building structures. In Y. Fukumoto and G. Lee, (eds.), Stability and ductility of steel structures under cyclic loading, CRC Press, Boca Raton, USA, s. 309-321.
  • Sabelli, R., Hohbach, D. 1999. Design of cross-braced frames for predictable buckling behavior, Journal of Structural Engineering, ASCE, 125, s. 163-168. DOI: 10.1061/(ASCE)0733-9445(1999)125:2(163).
  • Tremblay, R. 2002. Inelastic seismic response of steel bracing members, Journal of Constructional Steel Research,58 (5–8) s. 665–701. DOI: 10.1016/S0143-974X(01)00104-3.
  • Shaback, B., Brown, T. 2003. Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading, Canadian Journal of Civil Engineering, 30 (4), s. 745–753. DOI: 10.1139/l03-028.
  • Tremblay, R., Archambault, M.H., Filiatrault, A. 2003. Seismic response of concentrically braced steel frames made with rectangular hollow bracing members Journal of Structural Engineering, ASCE, 129 (12) s. 1626–1636. DOI:10.1061/(ASCE)0733-9445(2003)129:12(1626).
  • Lee, K. Bruneau, M. 2005. Energy Dissipation of Compression Members in Concentrically Braced Frames: Review of Experimental Data, Journal of Structural Engineering, ASCE, 131 (4), s. 552–559. DOI: 10.1061/(ASCE)0733-9445(2005)131:4(552).
  • Uriz, P. Mahin, S. 2008. Towards Earthquake Resistant Design of Concentrically Braced Steel Structures, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, (Report No. PEER-2008/08).
  • Broderick, B.M. Elghazouli, A.Y. Goggins, J. 2008. Earthquake testing and response analysis of concentrically-braced sub-frames, Journal of Constructional Steel Research, 64 (9), s. 997–1007. DOI: 10.1016/j.jcsr.2007.12.014.
  • Nip, K.H. Gardner, L. Elghazouli, A.Y. Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members, Engineering Structures, 32 (2) (2010) 424–441. DOI: 10.1016/j.engstruct.2009.10.005.
  • Roeder, C.W., Lehman, D.E., Clark, K., Powell, J., Yoo, J.H., Tsai, K.C., Lin, C.H. Wei, C.Y. 2011. Influence of gusset plate connections and braces on the seismic performance of X-braced frames, Earthquake Engineering and Structural Dynamics, 40 (4), s. 355–374. DOI: 10.1002/eqe.1024.
  • Kural, M.E., Zeybek, Ö. 2011. Merkezi çelik çaprazla teşkil edilmiş çok katlı çelik yapıların ikinci mertebe analizi, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 20, s. 1-14.
  • Kural, M.E., Zeybek, Ö., Seçer, M. 2011. Çelik yapı sistemlerinde ikinci mertebe analiz yöntemlerinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi , 13 (2) , s. 75-87.
  • Lumpkin, E.J., Hsiao, P.C., Roeder, C.W., Lehman, D.E., Tsai, C.Y., Wu, A.C., Wei, C.Y., Tsai, K.C. 2012. Investigation of the seismic response of three-story special concentrically braced frames, Journal of Constructional Steel Research, 77, s. 131–144. DOI: 10.1016/j.jcsr.2012.04.003.
  • Okazaki, T., Lignos, D.G., Hikino,T., Kajiwara, K. 2013. Dynamic response of a chevron concentrically braced frame, Journal of Structural Engineering, ASCE 139 (4), s. 515–525. DOI: 10.1061/(ASCE)ST.1943-541X.0000679.
  • Hsiao, P.C., Lehman, D.E., Roeder, C.W. 2013. Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames, Earthquake Engineering and Structural Dynamics, 42 (10), s. 1547–1564. DOI: 10.1002/eqe.2286.
  • Shen, J., Wen, R., Akbas, B., Doran, B., Uckan, E. 2014. Seismic demand on brace-intersected beams in two-story X-braced frames, Engineering Structures, 76, s. 295–312. DOI: 10.1016/j.engstruct.2014.07.022. Wijesundara, K.K., Nascimbene, R., Rassati, G.A. 2014. Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach, Journal of Constructional Steel Research, 101, s. 426-436. DOI: 10.1016/j.jcsr.2014.06.009.
  • Shen, J., Wen, R., Akbas, B. 2015. Mechanisms in two-story X-braced frames, Journal of Constructional Steel Research, 106, s. 258–277. DOI: 10.1016/j.jcsr.2014.12.014.
  • Sen, A.D., Roeder, C.W., Berman, J.W., Lehman, D.E., Li, C.H., Wu, A.C., Tsai, K.C. 2016. Experimental Investigation of Chevron Concentrically Braced Frames with Yielding Beams, Journal of Structural Engineering, ASCE 142 (12), s. 04016123. DOI: 10.1061/(ASCE)ST.1943-541X.0001597.
  • Azad, S.K., Topkaya, C., Astaneh-Asl A. 2017. Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions, Journal of Constructional Steel Research, 133, s. 383-404, DOI: 10.1016/j.jcsr.2017.02.026.
  • Kanyilmaz, A. (2017), "Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study", Journal of Constructional Steel Research, 133, 1-18. DOI: 10.1016/j.jcsr.2017.01.023.
  • Zhao, B., Zhou, T., Chen, Z., Yu, J., Yan, X., Zheng, P. Zhao, Z. 2017. Experimental seismic behaviour of SCFRT column chevron concentrically braced frames, Journal of Constructional Steel Research, 133, s. 141–155. DOI: 10.1016/j.jcsr.2017.02.008.
  • Silva, A., Santos, L., Ribeiro, T., Castro, J.M. 2018. Improved seismic design of concentrically X-braced steel frames to Eurocode 8, Journal of Earthquake Engineering, 1–26. DOI: 10.1080/13632469.2018.1528912.
  • Kumar, M.S., Senthilkumar, R., Sourabha, L. 2019. Seismic performance of special concentric steel braced frames, Structures, 20, s. 166-175. DOI: 10.1016/j.istruc.2019.03.012.
  • Faytarouni, M., Seker, O., Akbas, B., Shen, J. 2019. Seismic assessment of ductile concentrically braced frames with HSS bracings, Engineering Structures, 191, s. 401-416. DOI: 10.1016/j.engstruct.2019.04.088.
  • Silva, A., Castro, J.M., Monteiro R. 2019. Practical considerations on the design of concentrically- braced steel frames to Eurocode 8, Journal of Constructional Steel Research, 158, s. 71-85. DOI: 10.1016/j.jcsr.2019.03.011.
  • AISC, 2010. Specification for Structural Steel Buildings, ANSI/AISC 360-10, American Institute of Steel Construction, Chicago, IL.
  • AISC, 2010. Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-10, American Institute of Steel Construction, Chicago, IL.
  • Eurocode 3, 2003. Design of steel structures – part 1-1: general rules and rules for buildings, EN 1993-1:2003, European Standard, Comité Européen de Normalisation, Brussels.
  • Eurocode 8, 2004. Design of structures for earthquake resistance - part 1: general rules, seismic actions and rules for buildings, EN 1998-1:2004, European Standard, Comité Européen de Normalisation, Brussels.
  • Topkaya, C., Şahin S., A. 2011. Comparative Study of AISC-360 and EC3 Strength Limit States, International Journal of Steel Structures, 11(1) 13–27.
  • ÇYTHYE, 2016. Çelik yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik, T.C. Resmi Gazete, sayı:29614, s.247.
  • TBDY, 2018. Deprem Etkisi Altında Binaların Tasarımı için Esaslar, Afet ve Acil Durum Yönetimi Başkanlığı, s.417, Ankara.
  • SAP 2000 Structural Analysis Program, Nonlinear Version 21.0 ultimate, Computers and Structures, Inc. 2019. Berkeley, California.
  • OPENSEES, 2009. Version 2.0 User Command-Language Manual.
  • Fell, B.V., Kanvinde, A.M., Deierlein, G.G., Mayers, A. T., 2009. Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering, ASCE, 135(1): 19-32. DOI: 10.1061/(ASCE)0733-9445(2009)135:1(19).

Effect of Braced Configuration on Design and Dynamic Performance of Concentrically Braced Frames

Year 2021, Volume: 23 Issue: 68, 399 - 412, 24.05.2021
https://doi.org/10.21205/deufmd.2021236805

Abstract

In this study, dynamic performance of X, inverted-V and split-X typed special concentrically braced frames (CBFs) designed based on Turkish Building Earthquake Code (TBEC-2018) and Design, Calculation and Construction Principles of Steel Structures (DCCPSC-2018) were investigated and compared. Pursuant to this aim, the nonlinear push-over analyses of a total of 18 CBFs with different number of story, different frame span and different braced configuration were conducted by using Opensees software. In the analysis results, tonnage, elastic stiffness, elastic base shear force and ductility capacity of each CBF were reported. The obtained results indicated that as the frame span increases, tonnage, elastic stiffness and elastic base shear force of CBFs increases whereas ductility capacity decreases. Moreover, it was noticed that split-X typed CBFs were more advantageous than the others in terms of both tonnage and dynamic performance.

References

  • Bruneau, M., Uang, C.M., Sabelli R. 2011. Ductile Design of Steel Structures. McGraw Hill Professional, 928s.
  • Gioncu, V., Mazzolani, F.M. 2014. Seismic Design of Steel Structures. CRC Press, Boca Raton, 487s.
  • Workman, G. 1969. The inelastic behavior of multistory braced frame structures subjected to earthquake excitation, University of Michigan at Ann Arbor UMEE 69R1, 159s.
  • Hanson, R. D. and Goel, Subhash C. 1972. Seismic behavior of multistory braced steel frames, Center for Cold-Formed Steel Structures Library. 161, 69s.
  • Bazan, E., Rosenblueth, E. 1974. Seismic Response of One-Story X-Braced Frames, Journal of the Structural Division, ASCE, vol. 100, ST2, s. 489-493.
  • Anderson, J.C. 1975. Seismic Behavior of K-Braced Framing Systems", Journal of the Structural Division, ASCE, vol. 101, ST10, s. 2147-2159.
  • Maison, BF, Popov, E.P. 1980. Cyclic response prediction for braced steel frames. Journal of Structural Engineering, ASCE, 106(7): s. 1401–1416.
  • Astaneh-Asl, A., Goel, S.C. 1984. Cyclic in-plane buckling of double angle bracing, Journal of Structural Engineering, ASCE, 110 (9), s. 2036–2055. DOI: 10.1061/(ASCE)0733-9445(1984)110:9(2036).
  • A.Astaneh-Asl, S.C. Goel, R.D. Hanson, Cyclic out-of-plane buckling of double-angle bracing, Journal of Structural Engineering, ASCE, 111 (5) (1985) 1135–1153. DOI: 10.1061/(ASCE)0733-9445(1985)111:5(1135).
  • Goel, S.C., El-Tayem, A.A. 1986. Cyclic Load Behavior of Angle X-Bracing, Journal of Structural Engineering, ASCE,112 (11) s. 2528-2539. DOI: 10.1061/(ASCE)0733-9445(1986)112:11(2528).
  • Khatib, I.F., Mahin, S.A. Pister, K.S. 1988. Seismic Behavior of Concentrically Braced Steel Frames Earthquake Engineering Research Center, University of California.
  • Fukuta, T. Nishiyama, I. Yamanouchi, H. Kato, B. 1989. Seismic performance of steel frames with inverted V braces, Journal of Structural Engineering, ASCE 115 (8) s. 2016–2028. DOI: 10.1061/(ASCE)0733-9445(1989)115:8(2016).
  • Yamanouchi, H., Midorikawa, M., Nishiyama, I., Watabe, M. 1989. Seismic behavior of full-scale concentrically braced steel building structure. Journal of Structural Engineering, ASCE, 115(8), s. 1917–1929. DOI: 10.1061/(ASCE)0733-9445(1989)115:8(1917).
  • Nakashima, M., Wakabayashi, M. 1992. Analysis and design of steel braces and braced frames in building structures. In Y. Fukumoto and G. Lee, (eds.), Stability and ductility of steel structures under cyclic loading, CRC Press, Boca Raton, USA, s. 309-321.
  • Sabelli, R., Hohbach, D. 1999. Design of cross-braced frames for predictable buckling behavior, Journal of Structural Engineering, ASCE, 125, s. 163-168. DOI: 10.1061/(ASCE)0733-9445(1999)125:2(163).
  • Tremblay, R. 2002. Inelastic seismic response of steel bracing members, Journal of Constructional Steel Research,58 (5–8) s. 665–701. DOI: 10.1016/S0143-974X(01)00104-3.
  • Shaback, B., Brown, T. 2003. Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading, Canadian Journal of Civil Engineering, 30 (4), s. 745–753. DOI: 10.1139/l03-028.
  • Tremblay, R., Archambault, M.H., Filiatrault, A. 2003. Seismic response of concentrically braced steel frames made with rectangular hollow bracing members Journal of Structural Engineering, ASCE, 129 (12) s. 1626–1636. DOI:10.1061/(ASCE)0733-9445(2003)129:12(1626).
  • Lee, K. Bruneau, M. 2005. Energy Dissipation of Compression Members in Concentrically Braced Frames: Review of Experimental Data, Journal of Structural Engineering, ASCE, 131 (4), s. 552–559. DOI: 10.1061/(ASCE)0733-9445(2005)131:4(552).
  • Uriz, P. Mahin, S. 2008. Towards Earthquake Resistant Design of Concentrically Braced Steel Structures, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, (Report No. PEER-2008/08).
  • Broderick, B.M. Elghazouli, A.Y. Goggins, J. 2008. Earthquake testing and response analysis of concentrically-braced sub-frames, Journal of Constructional Steel Research, 64 (9), s. 997–1007. DOI: 10.1016/j.jcsr.2007.12.014.
  • Nip, K.H. Gardner, L. Elghazouli, A.Y. Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members, Engineering Structures, 32 (2) (2010) 424–441. DOI: 10.1016/j.engstruct.2009.10.005.
  • Roeder, C.W., Lehman, D.E., Clark, K., Powell, J., Yoo, J.H., Tsai, K.C., Lin, C.H. Wei, C.Y. 2011. Influence of gusset plate connections and braces on the seismic performance of X-braced frames, Earthquake Engineering and Structural Dynamics, 40 (4), s. 355–374. DOI: 10.1002/eqe.1024.
  • Kural, M.E., Zeybek, Ö. 2011. Merkezi çelik çaprazla teşkil edilmiş çok katlı çelik yapıların ikinci mertebe analizi, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 20, s. 1-14.
  • Kural, M.E., Zeybek, Ö., Seçer, M. 2011. Çelik yapı sistemlerinde ikinci mertebe analiz yöntemlerinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi , 13 (2) , s. 75-87.
  • Lumpkin, E.J., Hsiao, P.C., Roeder, C.W., Lehman, D.E., Tsai, C.Y., Wu, A.C., Wei, C.Y., Tsai, K.C. 2012. Investigation of the seismic response of three-story special concentrically braced frames, Journal of Constructional Steel Research, 77, s. 131–144. DOI: 10.1016/j.jcsr.2012.04.003.
  • Okazaki, T., Lignos, D.G., Hikino,T., Kajiwara, K. 2013. Dynamic response of a chevron concentrically braced frame, Journal of Structural Engineering, ASCE 139 (4), s. 515–525. DOI: 10.1061/(ASCE)ST.1943-541X.0000679.
  • Hsiao, P.C., Lehman, D.E., Roeder, C.W. 2013. Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames, Earthquake Engineering and Structural Dynamics, 42 (10), s. 1547–1564. DOI: 10.1002/eqe.2286.
  • Shen, J., Wen, R., Akbas, B., Doran, B., Uckan, E. 2014. Seismic demand on brace-intersected beams in two-story X-braced frames, Engineering Structures, 76, s. 295–312. DOI: 10.1016/j.engstruct.2014.07.022. Wijesundara, K.K., Nascimbene, R., Rassati, G.A. 2014. Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach, Journal of Constructional Steel Research, 101, s. 426-436. DOI: 10.1016/j.jcsr.2014.06.009.
  • Shen, J., Wen, R., Akbas, B. 2015. Mechanisms in two-story X-braced frames, Journal of Constructional Steel Research, 106, s. 258–277. DOI: 10.1016/j.jcsr.2014.12.014.
  • Sen, A.D., Roeder, C.W., Berman, J.W., Lehman, D.E., Li, C.H., Wu, A.C., Tsai, K.C. 2016. Experimental Investigation of Chevron Concentrically Braced Frames with Yielding Beams, Journal of Structural Engineering, ASCE 142 (12), s. 04016123. DOI: 10.1061/(ASCE)ST.1943-541X.0001597.
  • Azad, S.K., Topkaya, C., Astaneh-Asl A. 2017. Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions, Journal of Constructional Steel Research, 133, s. 383-404, DOI: 10.1016/j.jcsr.2017.02.026.
  • Kanyilmaz, A. (2017), "Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study", Journal of Constructional Steel Research, 133, 1-18. DOI: 10.1016/j.jcsr.2017.01.023.
  • Zhao, B., Zhou, T., Chen, Z., Yu, J., Yan, X., Zheng, P. Zhao, Z. 2017. Experimental seismic behaviour of SCFRT column chevron concentrically braced frames, Journal of Constructional Steel Research, 133, s. 141–155. DOI: 10.1016/j.jcsr.2017.02.008.
  • Silva, A., Santos, L., Ribeiro, T., Castro, J.M. 2018. Improved seismic design of concentrically X-braced steel frames to Eurocode 8, Journal of Earthquake Engineering, 1–26. DOI: 10.1080/13632469.2018.1528912.
  • Kumar, M.S., Senthilkumar, R., Sourabha, L. 2019. Seismic performance of special concentric steel braced frames, Structures, 20, s. 166-175. DOI: 10.1016/j.istruc.2019.03.012.
  • Faytarouni, M., Seker, O., Akbas, B., Shen, J. 2019. Seismic assessment of ductile concentrically braced frames with HSS bracings, Engineering Structures, 191, s. 401-416. DOI: 10.1016/j.engstruct.2019.04.088.
  • Silva, A., Castro, J.M., Monteiro R. 2019. Practical considerations on the design of concentrically- braced steel frames to Eurocode 8, Journal of Constructional Steel Research, 158, s. 71-85. DOI: 10.1016/j.jcsr.2019.03.011.
  • AISC, 2010. Specification for Structural Steel Buildings, ANSI/AISC 360-10, American Institute of Steel Construction, Chicago, IL.
  • AISC, 2010. Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-10, American Institute of Steel Construction, Chicago, IL.
  • Eurocode 3, 2003. Design of steel structures – part 1-1: general rules and rules for buildings, EN 1993-1:2003, European Standard, Comité Européen de Normalisation, Brussels.
  • Eurocode 8, 2004. Design of structures for earthquake resistance - part 1: general rules, seismic actions and rules for buildings, EN 1998-1:2004, European Standard, Comité Européen de Normalisation, Brussels.
  • Topkaya, C., Şahin S., A. 2011. Comparative Study of AISC-360 and EC3 Strength Limit States, International Journal of Steel Structures, 11(1) 13–27.
  • ÇYTHYE, 2016. Çelik yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik, T.C. Resmi Gazete, sayı:29614, s.247.
  • TBDY, 2018. Deprem Etkisi Altında Binaların Tasarımı için Esaslar, Afet ve Acil Durum Yönetimi Başkanlığı, s.417, Ankara.
  • SAP 2000 Structural Analysis Program, Nonlinear Version 21.0 ultimate, Computers and Structures, Inc. 2019. Berkeley, California.
  • OPENSEES, 2009. Version 2.0 User Command-Language Manual.
  • Fell, B.V., Kanvinde, A.M., Deierlein, G.G., Mayers, A. T., 2009. Experimental investigation of inelastic cyclic buckling and fracture of steel braces. Journal of Structural Engineering, ASCE, 135(1): 19-32. DOI: 10.1061/(ASCE)0733-9445(2009)135:1(19).
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Bakır Bozkurt 0000-0002-1213-3092

Özer Zeybek 0000-0002-6921-1039

Publication Date May 24, 2021
Published in Issue Year 2021 Volume: 23 Issue: 68

Cite

APA Bozkurt, M. B., & Zeybek, Ö. (2021). Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(68), 399-412. https://doi.org/10.21205/deufmd.2021236805
AMA Bozkurt MB, Zeybek Ö. Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi. DEUFMD. May 2021;23(68):399-412. doi:10.21205/deufmd.2021236805
Chicago Bozkurt, Mehmet Bakır, and Özer Zeybek. “Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına Ve Dinamik Performansına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 68 (May 2021): 399-412. https://doi.org/10.21205/deufmd.2021236805.
EndNote Bozkurt MB, Zeybek Ö (May 1, 2021) Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 68 399–412.
IEEE M. B. Bozkurt and Ö. Zeybek, “Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi”, DEUFMD, vol. 23, no. 68, pp. 399–412, 2021, doi: 10.21205/deufmd.2021236805.
ISNAD Bozkurt, Mehmet Bakır - Zeybek, Özer. “Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına Ve Dinamik Performansına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/68 (May 2021), 399-412. https://doi.org/10.21205/deufmd.2021236805.
JAMA Bozkurt MB, Zeybek Ö. Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi. DEUFMD. 2021;23:399–412.
MLA Bozkurt, Mehmet Bakır and Özer Zeybek. “Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına Ve Dinamik Performansına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 68, 2021, pp. 399-12, doi:10.21205/deufmd.2021236805.
Vancouver Bozkurt MB, Zeybek Ö. Çapraz Konfigürasyonunun Merkezi Çaprazlı Çelik Çerçevelerin Tasarımına ve Dinamik Performansına Etkisi. DEUFMD. 2021;23(68):399-412.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.