Research Article
BibTex RIS Cite

İç Basınca Maruz Olarak Çalışan Darbe Hasarlı Cam Elyaf / Epoksi Kompozit Tüplerin Yama Onarım Analizi

Year 2023, Volume: 25 Issue: 73, 107 - 120, 26.01.2023
https://doi.org/10.21205/deufmd.2023257309

Abstract

Kompozit yama uygulaması, hafifliği, esnek tasarımı ve düşük fiyatı nedeniyle rüzgâr türbinleri, hava araçları, basınçlı tanklar gibi hasarlı yapıları onarmak için faydalı bir teknik olup daha birçok endüstride yaygın bir uygulama alanı bulmuştur. Onarılan bölgenin aşırı ağırlığından ve gereksiz malzeme tüketiminden kaçınmak için kompozit yamaların şekil, boyut ve malzeme özelliklerine göre optimize edilmesi gerekir. Bu makale, belirli şekil ve malzeme özelliklerine sahip kompozitten kompozite yamalarda boyut ve malzeme etkisinin sayısal bir değerlendirmesini sunmaktadır. Yapıştırılarak uygulanmış yuvarlak uçlu kompozit yama parçaları, iç basınçla yüklenen dörtgen şeklinde delinme hasarlı silindirik ince duvarlı içi boş kompozit tüpleri onarmak için kullanılmaktadır. Beş farklı istifleme dizisine ve on farklı boyuta sahip cam elyaf / epoksi yamalar, en iyi kompozit yama çözümlerini elde etmek için sayısal olarak incelenmiştir. Onarılan tüplerin güvenlik faktörü, uç yarıçaplarını ve dolayısıyla yapışma alanlarını artırarak yükselse de güvenlik faktörü üzerinde önemli bir rol oynayan fiber oryantasyonu nedeniyle yama işleminin tam güvenli olmasını sağlamak adına yeterli olmadığı bulunmuştur. [0˚]4, [0˚, -45˚,45˚,90˚] ve [0 ˚,90 ˚]2 istifleme dizisine sahip ve yeterli yama alanlarına sahip olan yamaların DNV'nin Offshore Standardında (DNV-OS-C501) normal güvenlik sınıfı ve %5'in altındaki varyasyon katsayısı (COV) değeri için tanımlanan “1.15” değeri için güvenlik katsayısını sağlayabildiği bulunmuştur.

References

  • [1] Marioli-Riga Z., Xenos D., Vrettos C. 2004. A Standard Analysis Methodology for the Stress Analysis of Repaired Aircraft Structures with the Method of Composite Patch Repair. Applied Composite Materials, Vol. 11(4), pp. 191-203. Doi:10.1023/B: ACMA.0000035426.85626.01
  • [2] Ivañez I., Garcia-Castillo SK., Sanchez-Saez S., Barbero E. 2020. Experimental study of the impact behavior of repaired thin laminates with double composite patch, Mechanics of Advanced Materials and Structures, Vol. 27(19), pp. 1701-8. Doi:10.1080/15376494.2018.1524952
  • [3] Moradi M., Safizadeh M.S. 2019. Edge disbond detection of carbon/epoxy repair patch on aluminum using thermography, Composite Science and Technology, Vol. 179 pp. 41-53. Doi:10.1016/j.compscitech.2019.04.031
  • [4] Tsamasphyros G.J., Kanderakis G.N., Marioli-Riga Z.P. 2003. Thermal analysis by numerical methods of debonding effects near the crack tip under composite repairs, Applied Composite Materials, Vol. 10(3), pp. 149–58. Doi:10.1023/A:1023945121389
  • [5] Aminallah L., Rezgani L., Bouiadjra B.B., Madani K., Albedah A., Benyahia F. 2011. Effects of the composite and adhesive aging on the plasticity in bonded composite repair. Journal of Reinforced Plastic Composites, Vol. 30(15), pp. 1245–50. Doi: 10.1177/0731684411417918
  • [6] Bouzitouna W.N., Oudad W., Belhamiani M., Belhadri D.E., Zouambi L. 2020. Elastoplastic analysis of cracked Aluminum plates with a hybrid repair technique using the bonded composite patch and drilling hole in opening mode I. Frattura ed Integrità Strutturale, Vol. 52, pp. 256–68. Doi: 10.3221/igf-esis.52.20
  • [7] Albedah A., Khan Mohammed S.M.A., Bouiadjra B.B., Bouiadjra B.A.B., Benyahia F. 2018. Effect of the patch length on the effectiveness of one-sided bonded composite repair for aluminum panels. International Journal of Adhesion and Adhesives, Vol. 81, pp. 83–9. Doi: 10.1016/j.ijadhadh.2017.11.012
  • [8] Andrew J. J., Srinivasan, S. M., Arockiarajan, A. 2019. Influence of patch lay-up configuration and hybridization on low velocity impact and post-impact tensile response of repaired glass fiber reinforced plastic composites, Journal of Composite Materials, Vol. 53(1), pp. 3–17. Doi: 10.1177/0021998318779430
  • [9] Brighenti R., Carpinteri A., Vantadori S. 2006. A genetic algorithm applied to optimisation of patch repairs for cracked plates, Computer Methods in Applied Mechanics and Engineering, Vol. 196(1–3), pp. 466–75. Doi: 10.1016/j.cma.2006.07.004
  • [10] Echer L., de Souza C.E., Marczak R.J. 2021. A study on the best conventional shapes for composite repair patches, Materials Research, Vol. 24, art. no. e20210304, Doi: 10.1590/1980-5373-MR-2021-0304
  • [11] Ait Yala A., Megueni A. 2009. Optimization of composite patches repairs with the design of experiments method, Materials & Design, Vol. 30 (1), pp. 200-205. Doi: 10.1016/j.matdes.2008.04.049
  • [12] Abdelkader G. 2015. Relationship between the geometric properties and the shear modulus of the adhesive, and optimization of mechanical behavior of bonded assemblies, International Journal of Engineering Research in Africa, Vol. 15, pp. 86-96. Doi: 10.4028/www.scientific.net/JERA.15.86
  • [13] Ait Yala A., Demouche N., Beddek S., Hamid K. 2018. Full analysis of all composite patch repairing design parameters, Iranian Journal of Materials Science and Engineering, Vol. 15 (4), pp. 70-77. Doi: 10.22068/ijmse.15.4.70
  • [14] Sahami M., Heidary H. 2020. Parametric study on drilling of GFRP composite pipe produced by filament winding process in different backup condition, Composite Structures, Vol. 234, pp. 111661. Doi: 10.1016/j.compstruct.2019.111661
  • [15] ASTM E2981-21. Standard Guide for Nondestructive Examination of Composite Overwraps in Filament Wound Pressure Vessels Used in Aerospace Applications, Book of Standards, (03.04), 36 Doi: 10.1520/E2981-21
  • [16] ASTM D7136 Standard Test Method for Measuring the Damage Resistance of a Fiber Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, Book of Standards, (15.03), 16 Doi: 10.1520/E2981-21 10.1520/D7136_D7136M-15
  • [17] Khosravani M.R., Soltani P., Weinberg K., Reinicke T. 2021. Structural integrity of adhesively bonded 3D-printed joints, Polymer Testing, Vol. 100, art. no. 107262. Doi: 10.1016/j.polymertesting.2021.107262.
  • [18] Frascio M., Mandolfino C., Moroni F., Jilich M., Lagazzo A., Pizzorni M., Bergonzi L., Morano C., Alfano M., Avalle M. 2021. Appraisal of surface preparation in adhesive bonding of additive manufactured substrates, International Journal of Adhesion and Adhesives, Vol. 106, art. no. 102802, Doi: 10.1016/j.ijadhadh.2020.102802.
  • [19] DNV Offshore Standard DNV-OS-C501. Composite components. Det Norske Veritas; October 2010. https:// exchange.dnv.com
  • [20] Echtermeyer A. T., Lasn K. 2014. Safety approach for composite pressure vessels for road transport of hydrogen. Part 2: Safety factors and test requirements, International Journal of Hydrogen Energy, Vol. 39(26), pp. 14142-14152. Doi: 10.1016/j.ijhydene.2014.06.016
  • [21] Meriem-Benziane M., Abdul-Wahab S.A., Zahloul H., Babaziane B., Hadj-Meliani M., Pluvinage G. 2015. Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single- and double-bonded composites, Composites Part B: Engineering, Vol. 77, pp. 431-439, Doi: 10.1016/j.compositesb.2015.03.008.
  • [22] Chen Y.Z. 2000. Stress intensity factors in a finite length cylinder with a circumferential crack, International Journal of Pressure Vessels and Piping, Vol. 77(8), pp. 439 - 444, DOI: 10.1016/S0308-0161(00)00047-8
  • [23] Tasavori M, Maleki A.T., Ahmadi I. 2021. Composite coating effect on stress intensity factors of aluminum pressure vessels with inner circumferential crack by X-FEM, International Journal of Pressure Vessels and Piping, Vol. 194, art. no. 104445, Doi: 10.1016/j.ijpvp.2021.104445.

Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure

Year 2023, Volume: 25 Issue: 73, 107 - 120, 26.01.2023
https://doi.org/10.21205/deufmd.2023257309

Abstract

Application of composite patches is a useful technique to repair damaged structures such as wind turbines, air vehicles, pressure tanks because of lightweight, flexible design, and low price, and have found a widespread application area in many more industries. To avoid excessive weight of the repaired region as well as unnecessary material consumption composite patches need to be optimized according to shape, size and material specifications. This paper introduces a numerical assessment of size and material effect in composite-to-composite patches having specific shape and material properties. Adhesively bonded round-tipped composite patch pieces are utilized to repair a quadrilateral puncture damaged cylindrical thin-walled hollow composite tubes loaded by internal pressure. Glass fiber / epoxy patches with five different kinds of stacking sequence and ten different sizes are numerically investigated to achieve the best composite patch solutions. Although the safety factor of repaired tubes enhances by increasing tip radiuses and hence their sticking area, it is found to be not sufficient to ensure that the patching process is completely safe because of the fiber orientation playing an important role on the factor of safety. The patches having [0˚]4, [0˚, -45˚,45˚,90˚], and [0 ˚,90 ˚]2 stacking sequences and having adequate patch areas are found to be able to provide the safety value of “1.15” which is defined for normal safety class and below 5% coefficients of variation (COV) value in DNV’s Offshore Standard (DNV-OS-C501).

References

  • [1] Marioli-Riga Z., Xenos D., Vrettos C. 2004. A Standard Analysis Methodology for the Stress Analysis of Repaired Aircraft Structures with the Method of Composite Patch Repair. Applied Composite Materials, Vol. 11(4), pp. 191-203. Doi:10.1023/B: ACMA.0000035426.85626.01
  • [2] Ivañez I., Garcia-Castillo SK., Sanchez-Saez S., Barbero E. 2020. Experimental study of the impact behavior of repaired thin laminates with double composite patch, Mechanics of Advanced Materials and Structures, Vol. 27(19), pp. 1701-8. Doi:10.1080/15376494.2018.1524952
  • [3] Moradi M., Safizadeh M.S. 2019. Edge disbond detection of carbon/epoxy repair patch on aluminum using thermography, Composite Science and Technology, Vol. 179 pp. 41-53. Doi:10.1016/j.compscitech.2019.04.031
  • [4] Tsamasphyros G.J., Kanderakis G.N., Marioli-Riga Z.P. 2003. Thermal analysis by numerical methods of debonding effects near the crack tip under composite repairs, Applied Composite Materials, Vol. 10(3), pp. 149–58. Doi:10.1023/A:1023945121389
  • [5] Aminallah L., Rezgani L., Bouiadjra B.B., Madani K., Albedah A., Benyahia F. 2011. Effects of the composite and adhesive aging on the plasticity in bonded composite repair. Journal of Reinforced Plastic Composites, Vol. 30(15), pp. 1245–50. Doi: 10.1177/0731684411417918
  • [6] Bouzitouna W.N., Oudad W., Belhamiani M., Belhadri D.E., Zouambi L. 2020. Elastoplastic analysis of cracked Aluminum plates with a hybrid repair technique using the bonded composite patch and drilling hole in opening mode I. Frattura ed Integrità Strutturale, Vol. 52, pp. 256–68. Doi: 10.3221/igf-esis.52.20
  • [7] Albedah A., Khan Mohammed S.M.A., Bouiadjra B.B., Bouiadjra B.A.B., Benyahia F. 2018. Effect of the patch length on the effectiveness of one-sided bonded composite repair for aluminum panels. International Journal of Adhesion and Adhesives, Vol. 81, pp. 83–9. Doi: 10.1016/j.ijadhadh.2017.11.012
  • [8] Andrew J. J., Srinivasan, S. M., Arockiarajan, A. 2019. Influence of patch lay-up configuration and hybridization on low velocity impact and post-impact tensile response of repaired glass fiber reinforced plastic composites, Journal of Composite Materials, Vol. 53(1), pp. 3–17. Doi: 10.1177/0021998318779430
  • [9] Brighenti R., Carpinteri A., Vantadori S. 2006. A genetic algorithm applied to optimisation of patch repairs for cracked plates, Computer Methods in Applied Mechanics and Engineering, Vol. 196(1–3), pp. 466–75. Doi: 10.1016/j.cma.2006.07.004
  • [10] Echer L., de Souza C.E., Marczak R.J. 2021. A study on the best conventional shapes for composite repair patches, Materials Research, Vol. 24, art. no. e20210304, Doi: 10.1590/1980-5373-MR-2021-0304
  • [11] Ait Yala A., Megueni A. 2009. Optimization of composite patches repairs with the design of experiments method, Materials & Design, Vol. 30 (1), pp. 200-205. Doi: 10.1016/j.matdes.2008.04.049
  • [12] Abdelkader G. 2015. Relationship between the geometric properties and the shear modulus of the adhesive, and optimization of mechanical behavior of bonded assemblies, International Journal of Engineering Research in Africa, Vol. 15, pp. 86-96. Doi: 10.4028/www.scientific.net/JERA.15.86
  • [13] Ait Yala A., Demouche N., Beddek S., Hamid K. 2018. Full analysis of all composite patch repairing design parameters, Iranian Journal of Materials Science and Engineering, Vol. 15 (4), pp. 70-77. Doi: 10.22068/ijmse.15.4.70
  • [14] Sahami M., Heidary H. 2020. Parametric study on drilling of GFRP composite pipe produced by filament winding process in different backup condition, Composite Structures, Vol. 234, pp. 111661. Doi: 10.1016/j.compstruct.2019.111661
  • [15] ASTM E2981-21. Standard Guide for Nondestructive Examination of Composite Overwraps in Filament Wound Pressure Vessels Used in Aerospace Applications, Book of Standards, (03.04), 36 Doi: 10.1520/E2981-21
  • [16] ASTM D7136 Standard Test Method for Measuring the Damage Resistance of a Fiber Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, Book of Standards, (15.03), 16 Doi: 10.1520/E2981-21 10.1520/D7136_D7136M-15
  • [17] Khosravani M.R., Soltani P., Weinberg K., Reinicke T. 2021. Structural integrity of adhesively bonded 3D-printed joints, Polymer Testing, Vol. 100, art. no. 107262. Doi: 10.1016/j.polymertesting.2021.107262.
  • [18] Frascio M., Mandolfino C., Moroni F., Jilich M., Lagazzo A., Pizzorni M., Bergonzi L., Morano C., Alfano M., Avalle M. 2021. Appraisal of surface preparation in adhesive bonding of additive manufactured substrates, International Journal of Adhesion and Adhesives, Vol. 106, art. no. 102802, Doi: 10.1016/j.ijadhadh.2020.102802.
  • [19] DNV Offshore Standard DNV-OS-C501. Composite components. Det Norske Veritas; October 2010. https:// exchange.dnv.com
  • [20] Echtermeyer A. T., Lasn K. 2014. Safety approach for composite pressure vessels for road transport of hydrogen. Part 2: Safety factors and test requirements, International Journal of Hydrogen Energy, Vol. 39(26), pp. 14142-14152. Doi: 10.1016/j.ijhydene.2014.06.016
  • [21] Meriem-Benziane M., Abdul-Wahab S.A., Zahloul H., Babaziane B., Hadj-Meliani M., Pluvinage G. 2015. Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single- and double-bonded composites, Composites Part B: Engineering, Vol. 77, pp. 431-439, Doi: 10.1016/j.compositesb.2015.03.008.
  • [22] Chen Y.Z. 2000. Stress intensity factors in a finite length cylinder with a circumferential crack, International Journal of Pressure Vessels and Piping, Vol. 77(8), pp. 439 - 444, DOI: 10.1016/S0308-0161(00)00047-8
  • [23] Tasavori M, Maleki A.T., Ahmadi I. 2021. Composite coating effect on stress intensity factors of aluminum pressure vessels with inner circumferential crack by X-FEM, International Journal of Pressure Vessels and Piping, Vol. 194, art. no. 104445, Doi: 10.1016/j.ijpvp.2021.104445.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İbrahim Fadıl Soykök 0000-0001-8392-4505

Publication Date January 26, 2023
Published in Issue Year 2023 Volume: 25 Issue: 73

Cite

APA Soykök, İ. F. (2023). Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(73), 107-120. https://doi.org/10.21205/deufmd.2023257309
AMA Soykök İF. Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure. DEUFMD. January 2023;25(73):107-120. doi:10.21205/deufmd.2023257309
Chicago Soykök, İbrahim Fadıl. “Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 73 (January 2023): 107-20. https://doi.org/10.21205/deufmd.2023257309.
EndNote Soykök İF (January 1, 2023) Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 73 107–120.
IEEE İ. F. Soykök, “Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure”, DEUFMD, vol. 25, no. 73, pp. 107–120, 2023, doi: 10.21205/deufmd.2023257309.
ISNAD Soykök, İbrahim Fadıl. “Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/73 (January 2023), 107-120. https://doi.org/10.21205/deufmd.2023257309.
JAMA Soykök İF. Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure. DEUFMD. 2023;25:107–120.
MLA Soykök, İbrahim Fadıl. “Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 73, 2023, pp. 107-20, doi:10.21205/deufmd.2023257309.
Vancouver Soykök İF. Patch Repair Analysis of Impact Damaged Glass Fiber / Epoxy Composite Tubes Operating Under Internal Pressure. DEUFMD. 2023;25(73):107-20.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.