Research Article
BibTex RIS Cite

Kesirli Fourier Dönüşümleri Wiener-tipi Uzaylarda olan Fonksiyon Uzayları Üzerine Bir Not

Year 2023, , 717 - 728, 30.04.2023
https://doi.org/10.29130/dubited.1068024

Abstract

Bu çalışmanın amacı w, R^d kümesi üzerinde bir Beurling ağırlık fonksiyonu olmak üzere F_α h kesirli Fourier dömüşümü W(B,Y)(R^d ) Wiener-tipi uzayına ait h∈L_w^1 (R^d ) fonksiyonlarının bir vektör uzayı olan A_(α,w)^(B,Y) (R^d ) fonksiyon uzayını tanıtmak ve çalışmaktır. Bu uzayın bazı koşullar altında, 〖‖h‖〗_(1,w)+〖‖F_α h‖〗_(W(B,Y)) toplam normu ve Θ girişim işlemiyle birlikte bir Banach cebiri olduğu gösterildi. Bu uzayda bir yaklaşık birim bulundu ve bu uzayın L_w^1 (R^d ) uzayına göre bir soyut Segal cebiri olduğu gösterildi.

References

  • W. Rudin, Real and complex analysis. New York: MacGraw-Hill, 1966.
  • H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups. Clarendon Press, Oxford, 2000.
  • H. G. Feichtinger, “Banach convolution algebras of Wiener type”, Functions, Series, Operators, Proc. Conf. Budapest, 1980, vol. 38, pp. 509-524.
  • H. G. Feichtinger, “On a class of convolution algebras of functions”, Annales de l’institut Fourier, 1977, vol. 27, no. 3, pp. 135-162.
  • W. Rudin, Functional analysis. McGraw-Hill, New York, 1973.
  • H. Feichtinger, C. Graham and E. Lakien, “Nonfactorization in commutative, weakly selfadjoint Banach algebras”, Pac. J. Math., vol. 80, no. 1, pp. 117-125, 1979.
  • J. T. Burnham, “Closed ideals in subalgebras of Banach algebras. I”, Proc. Am. Math. Soc., vol. 32, no. 2, pp. 551-555, 1972.
  • H. G. Feichtinger and K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions, I”, J. Funct. Anal., vol. 86, no. 2, pp. 307-340, 1989.
  • H. Wang, Homogeneous Banach algebras. Marcel Dekker Inc., New York and Basel, 1977.
  • L. B. Almeida, “The fractional Fourier transform and time-frequency representations”, IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3084-3091, 1994.
  • L. B. Almeida, “Product and convolution theorems for the fractional Fourier transform”, IEEE Signal Process. Lett., vol. 4, no. 1, pp. 15-17, 1997.
  • V. Namias, “The fractional order Fourier transform and its application to quantum mechanics”, IMA J. Appl. Math., vol. 25, no. 3, pp. 241-265, 1980.
  • H. M. Ozaktas, M. A. Kutay and Z. Zalevsky, The fractional Fourier transform with applications in optics and signal processing. Wiley, Chichester, 2001.
  • A. I. Zayed, “On the relationship between the Fourier and fractional Fourier transforms”, IEEE Signal Process. Lett., vol. 3, no. 12, pp. 310-311, 1996.
  • A. Bultheel and H. Martínez, “A shattered survey of the fractional Fourier transform”, Rep. TW, vol. 337, 2002.
  • A. K. Singh and R. Saxena, “On convolution and product theorems for FRFT”, Wirel. Pers. Commun., vol. 65, no. 1, pp. 189-201, 2012.
  • E. Toksoy and A. Sandıkçı, “On function spaces with fractional Fourier transform in weighted Lebesgue spaces”, J. Inequalities Appl., vol. 2015, no. 1, pp. 1-10, 2015.
  • H. G. Feichtinger and K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions, I”, J. Funct. Anal., vol. 86, no. 2, pp. 307-340.
  • B. Saǧir, “On functions with Fourier transforms in W(B,Y)”, Demonstr. Math., vol. 33, no. 2, pp. 355-364, 2000.
  • A. Sandıkçı and E. Toksoy, “On an abstract Segal algebra under fractional convolution”, Montes Taurus J. Pure Appl. Math., vol. 4, no. 1, pp. 1-22, 2022.
  • R. S. Doran and J. Wichmann, Approximate identities and factorization in Banach modules, vol. 768. Springer-Verlag, 1979.

A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces

Year 2023, , 717 - 728, 30.04.2023
https://doi.org/10.29130/dubited.1068024

Abstract

The purpose of this paper is to introduce and study a function space A_(α,w)^(B,Y) (R^d ) to be a linear space of functions h∈L_w^1 (R^d ) whose fractional Fourier transforms F_α h belong to the Wiener-type space W(B,Y)(R^d ), where w is a Beurling weight function on R^d. We show that this space becomes a Banach algebra with the sum norm 〖‖h‖〗_(1,w)+〖‖F_α h‖〗_(W(B,Y)) and Θ convolution operation under some conditions. We find an approximate identity in this space and show that this space is an abstract Segal algebra with respect to L_w^1 (R^d ) under some conditions.

References

  • W. Rudin, Real and complex analysis. New York: MacGraw-Hill, 1966.
  • H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups. Clarendon Press, Oxford, 2000.
  • H. G. Feichtinger, “Banach convolution algebras of Wiener type”, Functions, Series, Operators, Proc. Conf. Budapest, 1980, vol. 38, pp. 509-524.
  • H. G. Feichtinger, “On a class of convolution algebras of functions”, Annales de l’institut Fourier, 1977, vol. 27, no. 3, pp. 135-162.
  • W. Rudin, Functional analysis. McGraw-Hill, New York, 1973.
  • H. Feichtinger, C. Graham and E. Lakien, “Nonfactorization in commutative, weakly selfadjoint Banach algebras”, Pac. J. Math., vol. 80, no. 1, pp. 117-125, 1979.
  • J. T. Burnham, “Closed ideals in subalgebras of Banach algebras. I”, Proc. Am. Math. Soc., vol. 32, no. 2, pp. 551-555, 1972.
  • H. G. Feichtinger and K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions, I”, J. Funct. Anal., vol. 86, no. 2, pp. 307-340, 1989.
  • H. Wang, Homogeneous Banach algebras. Marcel Dekker Inc., New York and Basel, 1977.
  • L. B. Almeida, “The fractional Fourier transform and time-frequency representations”, IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3084-3091, 1994.
  • L. B. Almeida, “Product and convolution theorems for the fractional Fourier transform”, IEEE Signal Process. Lett., vol. 4, no. 1, pp. 15-17, 1997.
  • V. Namias, “The fractional order Fourier transform and its application to quantum mechanics”, IMA J. Appl. Math., vol. 25, no. 3, pp. 241-265, 1980.
  • H. M. Ozaktas, M. A. Kutay and Z. Zalevsky, The fractional Fourier transform with applications in optics and signal processing. Wiley, Chichester, 2001.
  • A. I. Zayed, “On the relationship between the Fourier and fractional Fourier transforms”, IEEE Signal Process. Lett., vol. 3, no. 12, pp. 310-311, 1996.
  • A. Bultheel and H. Martínez, “A shattered survey of the fractional Fourier transform”, Rep. TW, vol. 337, 2002.
  • A. K. Singh and R. Saxena, “On convolution and product theorems for FRFT”, Wirel. Pers. Commun., vol. 65, no. 1, pp. 189-201, 2012.
  • E. Toksoy and A. Sandıkçı, “On function spaces with fractional Fourier transform in weighted Lebesgue spaces”, J. Inequalities Appl., vol. 2015, no. 1, pp. 1-10, 2015.
  • H. G. Feichtinger and K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions, I”, J. Funct. Anal., vol. 86, no. 2, pp. 307-340.
  • B. Saǧir, “On functions with Fourier transforms in W(B,Y)”, Demonstr. Math., vol. 33, no. 2, pp. 355-364, 2000.
  • A. Sandıkçı and E. Toksoy, “On an abstract Segal algebra under fractional convolution”, Montes Taurus J. Pure Appl. Math., vol. 4, no. 1, pp. 1-22, 2022.
  • R. S. Doran and J. Wichmann, Approximate identities and factorization in Banach modules, vol. 768. Springer-Verlag, 1979.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erdem Toksoy 0000-0003-3597-6161

Publication Date April 30, 2023
Published in Issue Year 2023

Cite

APA Toksoy, E. (2023). A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces. Duzce University Journal of Science and Technology, 11(2), 717-728. https://doi.org/10.29130/dubited.1068024
AMA Toksoy E. A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces. DÜBİTED. April 2023;11(2):717-728. doi:10.29130/dubited.1068024
Chicago Toksoy, Erdem. “A Note on Function Spaces With Fractional Fourier Transforms in Wiener-Type Spaces”. Duzce University Journal of Science and Technology 11, no. 2 (April 2023): 717-28. https://doi.org/10.29130/dubited.1068024.
EndNote Toksoy E (April 1, 2023) A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces. Duzce University Journal of Science and Technology 11 2 717–728.
IEEE E. Toksoy, “A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces”, DÜBİTED, vol. 11, no. 2, pp. 717–728, 2023, doi: 10.29130/dubited.1068024.
ISNAD Toksoy, Erdem. “A Note on Function Spaces With Fractional Fourier Transforms in Wiener-Type Spaces”. Duzce University Journal of Science and Technology 11/2 (April 2023), 717-728. https://doi.org/10.29130/dubited.1068024.
JAMA Toksoy E. A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces. DÜBİTED. 2023;11:717–728.
MLA Toksoy, Erdem. “A Note on Function Spaces With Fractional Fourier Transforms in Wiener-Type Spaces”. Duzce University Journal of Science and Technology, vol. 11, no. 2, 2023, pp. 717-28, doi:10.29130/dubited.1068024.
Vancouver Toksoy E. A Note on Function Spaces with Fractional Fourier Transforms in Wiener-type Spaces. DÜBİTED. 2023;11(2):717-28.