Abstract
With the recent developments in technology, the usage rates of cloud computing, smartphones, and navigation systems, especially the internet and social media, have increased. The intensive use of these devices has increased the amount of data stored or transferred. Such an increase has also led to a growth in the digital world-related crime rate. The size of the evidence has grown incrementally, and making it difficult to analyze the data effectively. The failures in analysis processes have ultimately affected the judicial proceedings negatively. To solve the aforementioned problems, a model is proposed that enables fast and accurate analysis of image data in the article. The model consists of VGG16 convolutional and fully connected neural network layers. In the study, a data set consisting of 300x300 pixel resolution images, 2085 of which were compiled from the Kaggle platform and 915 from different sources, was used. The model was tested in the FloydHub with the Keras and TensorFlow libraries. According to the test results, a 97.8% accuracy rate was obtained. Test results indicate that the proposed model provides an average performance increase of 5% compared to other studies.