Single-phase Boost-type Active Tracking AC-AC Voltage Regulator with an Improved Hybrid Control Technique
Year 2022,
, 139 - 153, 31.01.2022
Faruk Yalçın
,
Felix Hımmelstoss
Abstract
This paper presents a switch-mode single-phase boost-type AC-AC voltage regulator. The topology of the regulator needs only reduced numbers of components. Unlike the similar studies in the literature, a new hybrid control technique with a closed-loop PID controller and a novel developed feedforward controller is applied to the regulator that enhances the active tracking of the reference output voltage to obtain a higher quality of the sine-wave output voltage, when the input AC voltage is an ideal pure sine or including different harmonics levels. The proposed regulator with the proposed control technique is tested both by simulation and experimentally. The experimental set-up for the regulator is designed for 0.75 kW output power, 0-100 Vp input voltage (50 Hz), and 0-200 Vp output voltage. The results have shown that the proposed switch-mode boost type regulator is capable of obtaining the desired AC voltage with harmonics lower than 5% THD (total harmonic distortion) for different input/output parameters and different load conditions.
Thanks
The topology and control theory of the proposed AC regulator in the study are patented by the co-author in Austrian Patent Office as “Aktive Netzfilter” (patent no: AT 505460 B1, filed 10.07.2007, applied 15.06.2012).
References
- [1] T. A. Naidu, S. R. Arya, A. Al-Durra, and T. H. M. El-Fouly, “Comparative performance of dynamic voltage restorer using adaptive control algorithms with optimized error regulator gains,” Int. Trans. Elect. Energy Syst., early access, article no: e12696, 2020.
- [2] T. Kandil and M. A. Ahmed, “Control and operation of dynamic voltage restorer with online regulated DC-link capacitor in microgrid system,” Can. J. Elect. Comput. Eng., vol. 43, no. 4, pp. 331–341, 2020.
- [3] J. You, D. M. Vilathgamuwa, N. Ghasemi, and W. L. Malan, “Analysis and control of integrated DC bus voltage conditioner for cascade power converter system,” IEEE 3rd Int. Futur. Energy Electron. Conf. Ecce Asia (IFEEC 2017-ECCE ASIA), 2017, pp. 522–527.
- [4] P. Vu, V. T. N. Van, Q. Nguyen, N. Q. Dich, and M. Tran, “Design and implementation of active voltage conditioner in low-voltage distribution system,” J. Elect. Syst., vol. 16, no. 4, pp. 569–581, 2020.
- [5] D. M. Lee, T. G. Habetler, R. G. Harley, T. L. Keister, and J. R. Rostron, “A voltage sag supporter utilizing a PWM-switched autotransformer,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 626–635, 2007.
- [6] S. Subramanian and M. K. Mishra, “Interphase AC-AC topology for voltage sag supporter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 514–518, 2010.
- [7] J. Kaniewski, Z. Fedyczak, and G. Benysek, “AC voltage sag/swell compensator based on three-phase hybrid transformer with buck-boost matrix-reactance chopper,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3835–3846, 2014.
- [8] K. Yamamoto, K. Ikeda, Y. Tsurusaki, and M. Ikeda, “Characteristics of voltage sag/swell compensator utilizing single-phase matrix converter,” Int. Conf. Elect. Mach. Syst. (ICEMS), 2013, pp. 1863–1868.
- [9] R. P. R De Sousa, N. S. D. L. Marinus, C. B. Jacobina, and N. Rocha, “A unidirectional single-phase AC-DC-AC three-level three-leg converter,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1708–1716, 2019.
- [10] L. Yang, H. Zhao, S. Wang, and Y. J. Zhi, “Common-mode EMI noise analysis and reduction for AC-DC-AC systems with paralleled power modules,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 6989–7000, 2020.
- [11] M. Lucanu, O. Ursaru, C. Aghion, and N. Lucanu, “Efficient high frequency single-phase AC chopper,” Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., vol. 64, no. 1, pp. 69–74, 2019.
- [12] M. R. Hajimoradi and H. Mokhtari, “AC voltage regulator based on AC/AC buck converter,” 7th Power Electron. Driv. Syst. Technol. Conf. (PEDSTC), 2016, pp. 140–146.
- [13] Y. B. Wang, P. Wang, G. W. Cai, C. Liu, D. B. Guo, H. W. Zhang, and B. D. Zhu, “An improved bipolar-type AC-AC converter topology based on nondifferential dual-buck PWM AC choppers,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4052–4065, 2021.
- [14] S. Sakamoto, T. Mishima, and C. Ide, “A phase-shift PWM-controlled ZVS boost full-bridge AC-AC converter for metal-surface high-frequency induction heating applications,” IEEE Energy Convers. Congr. Expo. (ECCE), 2016.
- [15] M. S. Dall'Asta, I. Barbi, and T. B. Lazzarin, “AC-AC hybrid boost switched-capacitor converter,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13115–13125, 2020.
- [16] F. Yalcin and F. A. Himmelstoss, “A new 3-phase buck-boost AC voltage regulator,” Elect. Power Compon. Syst., vol. 44, no. 20, pp. 2338–2351, 2016.
- [17] A. A. Khan, H. Cha, and H. F. Ahmed, “A new reliable three-phase buck-boost AC-AC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1000–1010, 2018.
- [18] Energylogix. (2021, March 2). Harmonics and IEEE 519 [Online]. Available: http://energylogix.ca/harmonics_and_ieee.pdf.
- [19] F. Himmelstoss, “Aktive Netzfilter,” Austrian Patent, patent no: AT 505460 B1, 2012.
İyilişetirilmiş Hibrit Kontrol Tekniği ile Tek Faz Yükseltici Tip Aktif İzleyen AA-AA Gerilim Regülatörü
Year 2022,
, 139 - 153, 31.01.2022
Faruk Yalçın
,
Felix Hımmelstoss
Abstract
Bu çalışmada anahtarlamalı mod tek faz yükseltici tip bir AA-AA gerilim regülatörü sunulmuştur. Literatürdeki benzer çalışmalardan farklı olarak, çıkışta yüksek kalitede sinüs formunda gerilim elde edebilmek için referans çıkış geriliminin takibini iyileştiren yeni bir hibrit kontrol tekniği regülatör çalışmasını kontrol için uygulanmıştır. Bu hibrit kontrol tekniğinde, kapalı çevrim PID kontrol yöntemi yeni geliştirilen ileri beslemeli açık çevrim kontrolcü ile desteklenmiştir. Önerilen çevirici ile önerilen kontrol tekniği hem simülasyon olarak hem de deneysel olarak test edilmiştir. Elde edilen sonuçlar, önerilen regülatörün farklı çalışma çalışma şartlarında üstünlüğünü göstermiştir.
References
- [1] T. A. Naidu, S. R. Arya, A. Al-Durra, and T. H. M. El-Fouly, “Comparative performance of dynamic voltage restorer using adaptive control algorithms with optimized error regulator gains,” Int. Trans. Elect. Energy Syst., early access, article no: e12696, 2020.
- [2] T. Kandil and M. A. Ahmed, “Control and operation of dynamic voltage restorer with online regulated DC-link capacitor in microgrid system,” Can. J. Elect. Comput. Eng., vol. 43, no. 4, pp. 331–341, 2020.
- [3] J. You, D. M. Vilathgamuwa, N. Ghasemi, and W. L. Malan, “Analysis and control of integrated DC bus voltage conditioner for cascade power converter system,” IEEE 3rd Int. Futur. Energy Electron. Conf. Ecce Asia (IFEEC 2017-ECCE ASIA), 2017, pp. 522–527.
- [4] P. Vu, V. T. N. Van, Q. Nguyen, N. Q. Dich, and M. Tran, “Design and implementation of active voltage conditioner in low-voltage distribution system,” J. Elect. Syst., vol. 16, no. 4, pp. 569–581, 2020.
- [5] D. M. Lee, T. G. Habetler, R. G. Harley, T. L. Keister, and J. R. Rostron, “A voltage sag supporter utilizing a PWM-switched autotransformer,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 626–635, 2007.
- [6] S. Subramanian and M. K. Mishra, “Interphase AC-AC topology for voltage sag supporter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 514–518, 2010.
- [7] J. Kaniewski, Z. Fedyczak, and G. Benysek, “AC voltage sag/swell compensator based on three-phase hybrid transformer with buck-boost matrix-reactance chopper,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3835–3846, 2014.
- [8] K. Yamamoto, K. Ikeda, Y. Tsurusaki, and M. Ikeda, “Characteristics of voltage sag/swell compensator utilizing single-phase matrix converter,” Int. Conf. Elect. Mach. Syst. (ICEMS), 2013, pp. 1863–1868.
- [9] R. P. R De Sousa, N. S. D. L. Marinus, C. B. Jacobina, and N. Rocha, “A unidirectional single-phase AC-DC-AC three-level three-leg converter,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1708–1716, 2019.
- [10] L. Yang, H. Zhao, S. Wang, and Y. J. Zhi, “Common-mode EMI noise analysis and reduction for AC-DC-AC systems with paralleled power modules,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 6989–7000, 2020.
- [11] M. Lucanu, O. Ursaru, C. Aghion, and N. Lucanu, “Efficient high frequency single-phase AC chopper,” Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., vol. 64, no. 1, pp. 69–74, 2019.
- [12] M. R. Hajimoradi and H. Mokhtari, “AC voltage regulator based on AC/AC buck converter,” 7th Power Electron. Driv. Syst. Technol. Conf. (PEDSTC), 2016, pp. 140–146.
- [13] Y. B. Wang, P. Wang, G. W. Cai, C. Liu, D. B. Guo, H. W. Zhang, and B. D. Zhu, “An improved bipolar-type AC-AC converter topology based on nondifferential dual-buck PWM AC choppers,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4052–4065, 2021.
- [14] S. Sakamoto, T. Mishima, and C. Ide, “A phase-shift PWM-controlled ZVS boost full-bridge AC-AC converter for metal-surface high-frequency induction heating applications,” IEEE Energy Convers. Congr. Expo. (ECCE), 2016.
- [15] M. S. Dall'Asta, I. Barbi, and T. B. Lazzarin, “AC-AC hybrid boost switched-capacitor converter,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13115–13125, 2020.
- [16] F. Yalcin and F. A. Himmelstoss, “A new 3-phase buck-boost AC voltage regulator,” Elect. Power Compon. Syst., vol. 44, no. 20, pp. 2338–2351, 2016.
- [17] A. A. Khan, H. Cha, and H. F. Ahmed, “A new reliable three-phase buck-boost AC-AC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1000–1010, 2018.
- [18] Energylogix. (2021, March 2). Harmonics and IEEE 519 [Online]. Available: http://energylogix.ca/harmonics_and_ieee.pdf.
- [19] F. Himmelstoss, “Aktive Netzfilter,” Austrian Patent, patent no: AT 505460 B1, 2012.