Research Article
BibTex RIS Cite

Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri

Year 2022, , 448 - 464, 31.01.2022
https://doi.org/10.29130/dubited.950588

Abstract

Bu çalışmada, içeriği bilinmeyen ve yüzeyi farklı bir malzeme ile kaplanmış bir numunenin kaplama yüzeyine tahribatsız olarak EDS-SEM analizleri yapılarak kaplama ve altlık malzemelerde bulunan elementlerin belirlenmesi ve birbirinden ayırt edilmesi hedeflenmiştir. Bu amaç doğrultusunda, EDS analizleri sırasında etkileşim hacmini etkileyerek farklı tanelerden karışık bir şekilde x-ışını sinyallerinin elde edilmesini engelleyebilen hızlandırma voltajı ile uygun değerlerde kullanılmaları kritik bir önem taşıyan işlem ve EDS programına girilen analiz süreleri gibi parametrelerden faydalanılmıştır. Yüksek pik çözünürlüğü ve doğru nicel sonuçlar elde edebilmek için ideal işlem süresinin 5 (hızlıdan yavaşa 1-6 arasında değer alır), EDS programına girilen analiz süresinin ise 80 sn (analizler 10, 20, 50, 80, 120 ve 180 sn sürelerinde gerçekleştirildi) olduğu belirlenmiştir. İdeal işlem ve analiz sürelerinde kaplama yüzeyine 30, 25, 20, 15 ve 10 kV hızlandırma voltaj değerlerinde yapılan EDS analizleri x-ışını sinyallerinin 30-15 kV aralığında kaplama ve ana malzemeden, 15 kV altında ise sadece kaplamadan geldiğini göstermiştir. EDS spektrumlarında karşılaşılan farklı elementlerin pik çakışması problemi EDS’e göre daha yüksek pik çözünürlüğüne sahip olan WDS-SEM tekniğiyle çözülmüştür. Yapılan analizler ile altlık malzemenin SiAlON, kaplama malzemesinin ise TiCN olduğu tayin edilmiştir.

Thanks

Yazarlar etkileşim hacminin çiziminde yardımcı olan Evrim Er Alım’a teşekkür etmektedirler.

References

  • [1] E. Uhlmann, J.A. Oyanedel Fuentes, M. Keunecke, “Machining of high performance workpiece materials with CBN coated cutting tools,” Thin Solid Films, vol. 518, no. 5, pp. 1451-1454, 2009.
  • [2] C. Faure, W. Hanni, C.J. Schmutz, M. Gervanoni, “Diamond-coated tools,” Diamond and Related Materials, vol. 8, no. 2–5, pp. 830-833, 1999.
  • [3] J. Liu, C. Ma, G. Tu, Y. Long, “Cutting performance and wear mechanism of Sialon ceramic cutting inserts with TiCN coating,” Surface & Coatings Technology, vol. 307, pp. 146-150, 2016.
  • [4] D. Neves, A. E. Diniz, M.S.F. Lima, “Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating,” Applied Surface Science, vol. 282, pp. 680-688, 2013.
  • [5] C. Xue, W. Chen, “Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy,” Wear, vol. 270, no. 11–12, pp. 895-902, 2011.
  • [6] L. Li, N. He, M. Wang, Z. G. Wang, “High speed cutting of Inconel 718 with coated carbide and ceramic inserts,” Journal of Materials Processing Technology, vol. 129, pp. 127-130, 2002.
  • [7] Y. Yang, W. Yan, D. Zhang, G. Song, Y. Zheng, “Insitu-fabrication of TiCN Ceramic Coating on Titanium Alloy by Laser Cladding Technology,” Key Engineering Materials, vol. 434-435, pp. 485-488, 2010.
  • [8] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J Scott, D. C. Joy, “Electron beam-specimen interactions: interaction volume, Backscattered electrons, Secondary electrons, X-rays, Energy dispersive x-ray spectrometry: Physical principles and user-selected parameters,” in Scanning Electron Microscopy and X-ray Microanalysis, 4th ed., NY, USA: Springer, 2018, pp. 1-64, 210-234.
  • [9] B. G. Mendis, “The Monte Carlo Method,” in Electron Beam‐Specimen Interactions and Simulation Methods in Microscopy, 1st ed., WS, UK: John Wiley & Sons Ltd., 2018, pp. 11-50.
  • [10] M. Suzuki, T. Kameda, A. Doi, S. Borisov, S. Babin, “Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives,” in Proc. SPIE 10585, Metrology, Inspection, and Process Control Microlithography XXXII, California, USA, 2018, doi: 10.1117/12.2301383.
  • [11] Y. Liao, “Comparison between EDS and WDS,” in Practical Electron Microscopy And Database, 2nd. ed., GlobalSino, 2007. [Online]. Available: https://www.globalsino.com/EM/.
  • [12] Myscope Microscopy Training. (2021, May 5). X-ray detection by EDS [Online]. Available: https://myscope.training/legacy/analysis/eds/xraydetection/
  • [13] Myscope Microscopy Training. (2021, May 5). EDS spectral resolution [Online]. Available: https://myscope.training/#/EDSlevel_1_6
  • [14] Oxford Instruments. (2021, May 8). Energy-Dispersive Spectroscopy (EDS) Operating Manual [Online]. Available: https://research.engineering.ucdavis.edu/cnm2/wp content/uploads/sites/11/2017/04/EDXS-SOP_033017.pdf
  • [15] P. F. Lang, B. C. Smith, “Ionization energies of atoms and atomic ions,” Journal of Chemical Education, vol. 80, pp. 938-946, 2003.
  • [16] P. J. Goodhew, J. Humphreys, R. Beanland, “Chemical analysis in electron microscope,” in Electron Microscopy and Analysis, 3rd ed., London and New York, UK and USA: Taylor & Francis, 2001, pp. 169-213.
  • [17] D. E. Newbury, “Mistakes encountered during automatic peak identification of minor and trace constituents in electron-excited energy dispersive x-ray microanalysis,” Scanning, vol. 31, pp. 1–11, 2009.
  • [18] R. Falcone, G. Sommariva, M. Verita, “WDXRF, EPMA and SEM/EDX quantitative chemical analysis of small glass samples,” Microchimica Acta, vol. 155, pp. 137-140, 2006.
  • [19] Oxford Instruments Nano Analysis, “An introduction to energy-dispersive and wavelength-dispersive x-ray microanalysis,” Microscopy and Analysis, vol. 20, no. 4, pp. 5-8, 2006.
  • [20] J. E. Mueller, J. W. Gillespie Jr., S. G. Advani, “Effects of interaction volume on X‐ray line‐scans across an ultrasonically consolidated aluminum/copper interface,” The Journal of Scanning Microscopies, vol. 35, pp. 327–335, 2013.
  • [21] E. Pretorius, “Influence of acceleration voltage on scanning electron microscopy of human blood platelets,” Microscopy Research and Technique, vol. 73, no. 3, pp. 225-228, 2010.
  • [22] J. A. Small, “The analysis of particles at low accelerating voltages (≤ 10 kV) with energy dispersive x-ray spectroscopy (EDS),” Journal of Research of the National Institute of Standards and Technology, vol. 107, no. 6, pp. 555–566, 2002.
  • [23] P. McSwiggen, “Characterisation of sub-micrometre features with the FE-EPMA,” in IOP Conf. Series: Materials Science and Engineering, vol. 55, pp. 1-12, 2014.

Non-Destructive Chemical Analyzes of Coating Materials in the Scanning Electron Microscope

Year 2022, , 448 - 464, 31.01.2022
https://doi.org/10.29130/dubited.950588

Abstract

In this study, it is aimed to determine and distinguish the elements in the coating and the base material by performing non-destructive EDS analyzes on the coating surface of a sample whose content is unknown and coated with a different material. For this purpose, parameters such as the acceleration voltage, which can prevent the generation of mixed x-ray signals from different grains by affecting the interaction volume during EDS analyzes, and also process and live times, which are critical to use at appropriate values, were used. To obtain high peak resolution and accurate quantitative results, it was determined that the ideal process time is 5 (process time takes values between 1-6 from fast to slow), and the optimum live time is 80 s (analyzes were carried out at 10, 20, 50, 80, 120 and 180 s). EDS analyzes which were performed to the coating surface at 30, 25, 20, 15 and 10 kV acceleration voltage values in ideal process and live times showed that x-ray signals came from both the coating and the base materials in the 30-15 kV range and from only the coating at values below 15 kV. The problem of peak overlapping of different elements encountered in EDS spectra has been solved by the WDS-SEM technique, which has a higher peak resolution than EDS. As a result of the analyzes, it was determined that the base material was SiAlON and the coating material was TiCN.

References

  • [1] E. Uhlmann, J.A. Oyanedel Fuentes, M. Keunecke, “Machining of high performance workpiece materials with CBN coated cutting tools,” Thin Solid Films, vol. 518, no. 5, pp. 1451-1454, 2009.
  • [2] C. Faure, W. Hanni, C.J. Schmutz, M. Gervanoni, “Diamond-coated tools,” Diamond and Related Materials, vol. 8, no. 2–5, pp. 830-833, 1999.
  • [3] J. Liu, C. Ma, G. Tu, Y. Long, “Cutting performance and wear mechanism of Sialon ceramic cutting inserts with TiCN coating,” Surface & Coatings Technology, vol. 307, pp. 146-150, 2016.
  • [4] D. Neves, A. E. Diniz, M.S.F. Lima, “Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating,” Applied Surface Science, vol. 282, pp. 680-688, 2013.
  • [5] C. Xue, W. Chen, “Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy,” Wear, vol. 270, no. 11–12, pp. 895-902, 2011.
  • [6] L. Li, N. He, M. Wang, Z. G. Wang, “High speed cutting of Inconel 718 with coated carbide and ceramic inserts,” Journal of Materials Processing Technology, vol. 129, pp. 127-130, 2002.
  • [7] Y. Yang, W. Yan, D. Zhang, G. Song, Y. Zheng, “Insitu-fabrication of TiCN Ceramic Coating on Titanium Alloy by Laser Cladding Technology,” Key Engineering Materials, vol. 434-435, pp. 485-488, 2010.
  • [8] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J Scott, D. C. Joy, “Electron beam-specimen interactions: interaction volume, Backscattered electrons, Secondary electrons, X-rays, Energy dispersive x-ray spectrometry: Physical principles and user-selected parameters,” in Scanning Electron Microscopy and X-ray Microanalysis, 4th ed., NY, USA: Springer, 2018, pp. 1-64, 210-234.
  • [9] B. G. Mendis, “The Monte Carlo Method,” in Electron Beam‐Specimen Interactions and Simulation Methods in Microscopy, 1st ed., WS, UK: John Wiley & Sons Ltd., 2018, pp. 11-50.
  • [10] M. Suzuki, T. Kameda, A. Doi, S. Borisov, S. Babin, “Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives,” in Proc. SPIE 10585, Metrology, Inspection, and Process Control Microlithography XXXII, California, USA, 2018, doi: 10.1117/12.2301383.
  • [11] Y. Liao, “Comparison between EDS and WDS,” in Practical Electron Microscopy And Database, 2nd. ed., GlobalSino, 2007. [Online]. Available: https://www.globalsino.com/EM/.
  • [12] Myscope Microscopy Training. (2021, May 5). X-ray detection by EDS [Online]. Available: https://myscope.training/legacy/analysis/eds/xraydetection/
  • [13] Myscope Microscopy Training. (2021, May 5). EDS spectral resolution [Online]. Available: https://myscope.training/#/EDSlevel_1_6
  • [14] Oxford Instruments. (2021, May 8). Energy-Dispersive Spectroscopy (EDS) Operating Manual [Online]. Available: https://research.engineering.ucdavis.edu/cnm2/wp content/uploads/sites/11/2017/04/EDXS-SOP_033017.pdf
  • [15] P. F. Lang, B. C. Smith, “Ionization energies of atoms and atomic ions,” Journal of Chemical Education, vol. 80, pp. 938-946, 2003.
  • [16] P. J. Goodhew, J. Humphreys, R. Beanland, “Chemical analysis in electron microscope,” in Electron Microscopy and Analysis, 3rd ed., London and New York, UK and USA: Taylor & Francis, 2001, pp. 169-213.
  • [17] D. E. Newbury, “Mistakes encountered during automatic peak identification of minor and trace constituents in electron-excited energy dispersive x-ray microanalysis,” Scanning, vol. 31, pp. 1–11, 2009.
  • [18] R. Falcone, G. Sommariva, M. Verita, “WDXRF, EPMA and SEM/EDX quantitative chemical analysis of small glass samples,” Microchimica Acta, vol. 155, pp. 137-140, 2006.
  • [19] Oxford Instruments Nano Analysis, “An introduction to energy-dispersive and wavelength-dispersive x-ray microanalysis,” Microscopy and Analysis, vol. 20, no. 4, pp. 5-8, 2006.
  • [20] J. E. Mueller, J. W. Gillespie Jr., S. G. Advani, “Effects of interaction volume on X‐ray line‐scans across an ultrasonically consolidated aluminum/copper interface,” The Journal of Scanning Microscopies, vol. 35, pp. 327–335, 2013.
  • [21] E. Pretorius, “Influence of acceleration voltage on scanning electron microscopy of human blood platelets,” Microscopy Research and Technique, vol. 73, no. 3, pp. 225-228, 2010.
  • [22] J. A. Small, “The analysis of particles at low accelerating voltages (≤ 10 kV) with energy dispersive x-ray spectroscopy (EDS),” Journal of Research of the National Institute of Standards and Technology, vol. 107, no. 6, pp. 555–566, 2002.
  • [23] P. McSwiggen, “Characterisation of sub-micrometre features with the FE-EPMA,” in IOP Conf. Series: Materials Science and Engineering, vol. 55, pp. 1-12, 2014.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sinem Başkut 0000-0002-2584-0220

Servet Turan This is me 0000-0002-7322-3091

Publication Date January 31, 2022
Published in Issue Year 2022

Cite

APA Başkut, S., & Turan, S. (2022). Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri. Duzce University Journal of Science and Technology, 10(1), 448-464. https://doi.org/10.29130/dubited.950588
AMA Başkut S, Turan S. Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri. DÜBİTED. January 2022;10(1):448-464. doi:10.29130/dubited.950588
Chicago Başkut, Sinem, and Servet Turan. “Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri”. Duzce University Journal of Science and Technology 10, no. 1 (January 2022): 448-64. https://doi.org/10.29130/dubited.950588.
EndNote Başkut S, Turan S (January 1, 2022) Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri. Duzce University Journal of Science and Technology 10 1 448–464.
IEEE S. Başkut and S. Turan, “Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri”, DÜBİTED, vol. 10, no. 1, pp. 448–464, 2022, doi: 10.29130/dubited.950588.
ISNAD Başkut, Sinem - Turan, Servet. “Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri”. Duzce University Journal of Science and Technology 10/1 (January 2022), 448-464. https://doi.org/10.29130/dubited.950588.
JAMA Başkut S, Turan S. Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri. DÜBİTED. 2022;10:448–464.
MLA Başkut, Sinem and Servet Turan. “Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri”. Duzce University Journal of Science and Technology, vol. 10, no. 1, 2022, pp. 448-64, doi:10.29130/dubited.950588.
Vancouver Başkut S, Turan S. Kaplama Malzemelerin Taramalı Elektron Mikroskobunda Tahribatsız Kimyasal Analizleri. DÜBİTED. 2022;10(1):448-64.