Research Article
BibTex RIS Cite

Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes

Year 2022, , 207 - 215, 31.01.2022
https://doi.org/10.29130/dubited.956216

Abstract

New pyridine based ruthenium complexes with different substituents were synthesized and characterized by Uv-Visible, fluorescence, FTIR and NMR spectroscopies. The substituents and solvent effects of the synthesized compounds on photoluminescence properties have been investigated. The compounds exhibit solvatochromic effect in different solvents. The electrochemical studies of the compounds were performed by cyclic voltammetry. The HOMO and LUMO energy levels are in the range (-5.51)-(-5.52) eV and (-3.04)-(-3.07) eV, respectively. These results indicate that there is no an important effect of side groups on electrochemical properties.

References

  • [1] B.-F. Qian, J.-L. Wang, A.-Q. Jia, H.-T. Shi, and Q.-F. Zhang, “Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands,” Inorganica Chim. Acta, vol. 516, p. 120128, 2021.
  • [2] Y. Huang, W.-C. Chen, X.-X. Zhang, R. Ghadari, X.-Q. Fang, T. Yu, and F.-T. Kong, “Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells,” J. Mater. Chem. C, vol. 6, no. 35, pp. 9445–9452, 2018.
  • [3] M. S. Costa, Y. G. Gonçalves, B. C. Borges, M. J. B. Silva, M. K. Amstalden, T. R. Costa, L. M. G. Antunes, R. S. Rodrigues, V. M. Rodrigues, E. F. Franca, M. A. P. Zoia, T. G. Araújo, L. R. Goulart, G. V. Poelhsitz, and K. A. G. Yoneyama, “Ruthenium (II) complex cis-[RuII(ŋ2-O2CC7H7O2)(dppm)2]PF6-hmxbato induces ROS-mediated apoptosis in lung tumor cells producing selective cytotoxicity,” Sci. Rep., vol. 10, no. 1, p. 15410, 2020.
  • [4] F. H. Haghighi, H. Hadadzadeh, F. Darabi, H. Farrokhpour, M. Daryanavard, and H. A. Rudbari, “Bis- and tris(2,3-dihydro-4a,12b-(epoxyethanooxy)[1,4]dioxino[2,3-f][1,10]phenanthroline) complexes of Ru(II): Synthesis, structure and DNA binding properties,” J. Mol. Struct., vol. 1040, pp. 98–111, 2013.
  • [5] L. Zeng, P. Gupta, Y. Chen, E. Wang, L. Ji, H. Chao, and Z.-S. Chen, “The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials,” Chem. Soc. Rev., vol. 46, no. 19, pp. 5771–5804, 2017.
  • [6] A. Lapasam, V. Banothu, U. Addepally, and M. R. Kollipara, “Half-sandwich arene ruthenium, rhodium and iridium thiosemicarbazone complexes: synthesis, characterization and biological evaluation,” J. Chem. Sci., vol. 132, no. 1, p. 34, 2020.
  • [7] O. Dömötör and É. A. Enyedy, “Binding mechanisms of half-sandwich Rh(III) and Ru(II) arene complexes on human serum albumin: a comparative study,” JBIC J. Biol. Inorg. Chem., vol. 24, no. 5, pp. 703–719, 2019.
  • [8] A. Gatti, A. Habtemariam, I. Romero-Canelón, J.-I. Song, B. Heer, G. J. Clarkson, D. Rogolino, P. J. Sadler, and M. Carcelli, “Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity,” Organometallics, vol. 37, no. 6, pp. 891–899, 2018.
  • [9] O. A. Lenis-Rojas, A. R. Fernandes, C. Roma-Rodrigues, P. V. Baptista, F. Marques, D. Pérez-Fernández, J. Guerra-Varela, L. Sánchez, D. Vázquez-García, M. López Torres, A. Fernández, and J. J. Fernández, “Heteroleptic mononuclear compounds of ruthenium(II): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos,” Dalt. Trans., vol. 45, pp. 19127–19140, 2016.
  • [10] P. Srivastava, M. Shukla, G. Kaul, S. Chopra, and A. K. Patra, “Rationally designed curcumin based ruthenium(ii) antimicrobials effective against drug-resistant Staphylococcus aureus,” Dalt. Trans., vol. 48, no. 31, pp. 11822–11828, 2019.
  • [11] Q. Yu, Y. Liu, L. Xu, C. Zheng, F. Le, X. Qin, Y. Liu, and J. Liu, “Ruthenium(II) polypyridyl complexes: Cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets,” Eur. J. Med. Chem., vol. 82, pp. 82–95, 2014.
  • [12] C. Sahin, T. Dittrich, C. Varlikli, S. Icli, and M. C. Lux-Steiner, “Role of side groups in pyridine and bipyridine ruthenium dye complexes for modulated surface photovoltage in nanoporous TiO2,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 4, pp. 686–690, 2010.
  • [13] C. Sahin, M. Ulusoy, C. Zafer, C. Ozsoy, C. Varlikli, T. Dittrich, B. Cetinkaya, and S. Icli, “The synthesis and characterization of 2-(2′-pyridyl)benzimidazole heteroleptic ruthenium complex: Efficient sensitizer for molecular photovoltaics,” Dye. Pigment., vol. 84, no. 1, pp. 88–94, 2010.
  • [14] T. Rüther, C. P.Woodward, T. W. Jones, C. J. Coghlan, Y. Hebting, R. L. Cordiner, R. E.Dawson, D. E. J. E. Robinson, and G. J. Wilson, “Synthesis, characterisation, and properties of p-cymene Ruthenium(II) tetracarboxylate bipyridine complexes [(η6-p-cymene)Ru(Rn,Rn′-tcbpy)Cl][Cl],” J. Organomet. Chem., vol. 823, pp. 136–146, 2016.
  • [15] F. Marszaukowski, I. D. L. Guimarães, J. P. Silva, L. H. S. Lacerda, S. R. Lazaro, M. P. Araujo, P. Castellen, T. T. Tominaga, R. T. Boeré, and K. Wohnrath, “Ruthenium(II)-arene complexes with monodentate aminopyridine ligands: Insights into redox stability and electronic structures and biological activity,” J. Organomet. Chem., vol. 881, pp. 66–78, 2019.
  • [16] K. Hasan, A. K. Bansal, I. D. W. Samuel, C. Roldán-Carmona, H. J. Bolink, and E. Zysman-Colman, “Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand,” Sci. Rep., vol. 5, no. 1, p. 12325, 2015.
  • [17] T. E. Knight, A. P. Goldstein, M. K. Brennaman, T. Cardolaccia, A. Pandya, J. M. DeSimone, and T. J. Meyer, “Influence of the Fluid-to-Film Transition on Photophysical Properties of MLCT Excited States in a Polymerizable Dimethacrylate Fluid,” J. Phys. Chem. B, vol. 115, no. 1, pp. 64–70, Jan. 2011.
  • [18] J. Xu, C. Yang, B. Tong, Y. Zhang, L. Liang, and M. Lu, “The Effects of Different Solvents and Excitation Wavelength on the Photophysical Properties of Two Novel Ir(III) Complexes Based on Phenylcinnoline Ligand,” J. Fluoresc., vol. 23, no. 5, pp. 865–875, 2013.
  • [19] F. Gillanders, L. Giordano, S. A. Díaz, T. M. Jovin, and E. A. Jares-Erijman, “Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties,” Photochem. Photobiol. Sci., vol. 13, no. 3, pp. 603–612, 2014.
  • [20] E.E. Langdon-Jones, A.J. Hallett, J.D. Routledge, D.A. Crole, B.D. Ward, J. A. Platts, and S. J. A. Pope, "Using Substituted Cyclometalated Quinoxaline Ligands To Finely Tune the Luminescence Properties of Iridium(III) Complexes," Inorg Chem., vol. 52, pp. 448–456, 2013.

Piridin İçeren Rutenyum Komplekslerinin Sentezi, Karakterizasyonu, Fotofiziksel ve Elektrokimyasal Özellikleri

Year 2022, , 207 - 215, 31.01.2022
https://doi.org/10.29130/dubited.956216

Abstract

Farklı sübstitüentlere sahip yeni piridin esaslı rutenyum kompleksleri sentezlendi ve Uv-Visible, floresans, FTIR ve NMR spektroskopileri ile karakterize edildi. Sentezlenen bileşiklerin fotolüminesans özellikleri üzerine sübsitüentler ve çözücü etkileri araştırılmıştır. Bileşikler farklı çözücüler içerisinde solvakromatik etki göstermektedir. Bileşiklerin elektrokimyasal çalışmaları döngüsel voltammetri ile gerçekleştirildi. HOMO ve LUMO enerji seviyeleri sırasıyla (-5.51)-(-5.52) eV ve (-3.04-(-3.07) eV aralığındadır. Bu sonuçlar yan grupların elektrokimyasal özellikleri üzerine önemli bir etkisinin olmadığını göstermektedir. 

References

  • [1] B.-F. Qian, J.-L. Wang, A.-Q. Jia, H.-T. Shi, and Q.-F. Zhang, “Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands,” Inorganica Chim. Acta, vol. 516, p. 120128, 2021.
  • [2] Y. Huang, W.-C. Chen, X.-X. Zhang, R. Ghadari, X.-Q. Fang, T. Yu, and F.-T. Kong, “Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells,” J. Mater. Chem. C, vol. 6, no. 35, pp. 9445–9452, 2018.
  • [3] M. S. Costa, Y. G. Gonçalves, B. C. Borges, M. J. B. Silva, M. K. Amstalden, T. R. Costa, L. M. G. Antunes, R. S. Rodrigues, V. M. Rodrigues, E. F. Franca, M. A. P. Zoia, T. G. Araújo, L. R. Goulart, G. V. Poelhsitz, and K. A. G. Yoneyama, “Ruthenium (II) complex cis-[RuII(ŋ2-O2CC7H7O2)(dppm)2]PF6-hmxbato induces ROS-mediated apoptosis in lung tumor cells producing selective cytotoxicity,” Sci. Rep., vol. 10, no. 1, p. 15410, 2020.
  • [4] F. H. Haghighi, H. Hadadzadeh, F. Darabi, H. Farrokhpour, M. Daryanavard, and H. A. Rudbari, “Bis- and tris(2,3-dihydro-4a,12b-(epoxyethanooxy)[1,4]dioxino[2,3-f][1,10]phenanthroline) complexes of Ru(II): Synthesis, structure and DNA binding properties,” J. Mol. Struct., vol. 1040, pp. 98–111, 2013.
  • [5] L. Zeng, P. Gupta, Y. Chen, E. Wang, L. Ji, H. Chao, and Z.-S. Chen, “The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials,” Chem. Soc. Rev., vol. 46, no. 19, pp. 5771–5804, 2017.
  • [6] A. Lapasam, V. Banothu, U. Addepally, and M. R. Kollipara, “Half-sandwich arene ruthenium, rhodium and iridium thiosemicarbazone complexes: synthesis, characterization and biological evaluation,” J. Chem. Sci., vol. 132, no. 1, p. 34, 2020.
  • [7] O. Dömötör and É. A. Enyedy, “Binding mechanisms of half-sandwich Rh(III) and Ru(II) arene complexes on human serum albumin: a comparative study,” JBIC J. Biol. Inorg. Chem., vol. 24, no. 5, pp. 703–719, 2019.
  • [8] A. Gatti, A. Habtemariam, I. Romero-Canelón, J.-I. Song, B. Heer, G. J. Clarkson, D. Rogolino, P. J. Sadler, and M. Carcelli, “Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity,” Organometallics, vol. 37, no. 6, pp. 891–899, 2018.
  • [9] O. A. Lenis-Rojas, A. R. Fernandes, C. Roma-Rodrigues, P. V. Baptista, F. Marques, D. Pérez-Fernández, J. Guerra-Varela, L. Sánchez, D. Vázquez-García, M. López Torres, A. Fernández, and J. J. Fernández, “Heteroleptic mononuclear compounds of ruthenium(II): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos,” Dalt. Trans., vol. 45, pp. 19127–19140, 2016.
  • [10] P. Srivastava, M. Shukla, G. Kaul, S. Chopra, and A. K. Patra, “Rationally designed curcumin based ruthenium(ii) antimicrobials effective against drug-resistant Staphylococcus aureus,” Dalt. Trans., vol. 48, no. 31, pp. 11822–11828, 2019.
  • [11] Q. Yu, Y. Liu, L. Xu, C. Zheng, F. Le, X. Qin, Y. Liu, and J. Liu, “Ruthenium(II) polypyridyl complexes: Cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets,” Eur. J. Med. Chem., vol. 82, pp. 82–95, 2014.
  • [12] C. Sahin, T. Dittrich, C. Varlikli, S. Icli, and M. C. Lux-Steiner, “Role of side groups in pyridine and bipyridine ruthenium dye complexes for modulated surface photovoltage in nanoporous TiO2,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 4, pp. 686–690, 2010.
  • [13] C. Sahin, M. Ulusoy, C. Zafer, C. Ozsoy, C. Varlikli, T. Dittrich, B. Cetinkaya, and S. Icli, “The synthesis and characterization of 2-(2′-pyridyl)benzimidazole heteroleptic ruthenium complex: Efficient sensitizer for molecular photovoltaics,” Dye. Pigment., vol. 84, no. 1, pp. 88–94, 2010.
  • [14] T. Rüther, C. P.Woodward, T. W. Jones, C. J. Coghlan, Y. Hebting, R. L. Cordiner, R. E.Dawson, D. E. J. E. Robinson, and G. J. Wilson, “Synthesis, characterisation, and properties of p-cymene Ruthenium(II) tetracarboxylate bipyridine complexes [(η6-p-cymene)Ru(Rn,Rn′-tcbpy)Cl][Cl],” J. Organomet. Chem., vol. 823, pp. 136–146, 2016.
  • [15] F. Marszaukowski, I. D. L. Guimarães, J. P. Silva, L. H. S. Lacerda, S. R. Lazaro, M. P. Araujo, P. Castellen, T. T. Tominaga, R. T. Boeré, and K. Wohnrath, “Ruthenium(II)-arene complexes with monodentate aminopyridine ligands: Insights into redox stability and electronic structures and biological activity,” J. Organomet. Chem., vol. 881, pp. 66–78, 2019.
  • [16] K. Hasan, A. K. Bansal, I. D. W. Samuel, C. Roldán-Carmona, H. J. Bolink, and E. Zysman-Colman, “Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand,” Sci. Rep., vol. 5, no. 1, p. 12325, 2015.
  • [17] T. E. Knight, A. P. Goldstein, M. K. Brennaman, T. Cardolaccia, A. Pandya, J. M. DeSimone, and T. J. Meyer, “Influence of the Fluid-to-Film Transition on Photophysical Properties of MLCT Excited States in a Polymerizable Dimethacrylate Fluid,” J. Phys. Chem. B, vol. 115, no. 1, pp. 64–70, Jan. 2011.
  • [18] J. Xu, C. Yang, B. Tong, Y. Zhang, L. Liang, and M. Lu, “The Effects of Different Solvents and Excitation Wavelength on the Photophysical Properties of Two Novel Ir(III) Complexes Based on Phenylcinnoline Ligand,” J. Fluoresc., vol. 23, no. 5, pp. 865–875, 2013.
  • [19] F. Gillanders, L. Giordano, S. A. Díaz, T. M. Jovin, and E. A. Jares-Erijman, “Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties,” Photochem. Photobiol. Sci., vol. 13, no. 3, pp. 603–612, 2014.
  • [20] E.E. Langdon-Jones, A.J. Hallett, J.D. Routledge, D.A. Crole, B.D. Ward, J. A. Platts, and S. J. A. Pope, "Using Substituted Cyclometalated Quinoxaline Ligands To Finely Tune the Luminescence Properties of Iridium(III) Complexes," Inorg Chem., vol. 52, pp. 448–456, 2013.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cigdem Sahın 0000-0002-3370-2434

Publication Date January 31, 2022
Published in Issue Year 2022

Cite

APA Sahın, C. (2022). Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes. Duzce University Journal of Science and Technology, 10(1), 207-215. https://doi.org/10.29130/dubited.956216
AMA Sahın C. Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes. DÜBİTED. January 2022;10(1):207-215. doi:10.29130/dubited.956216
Chicago Sahın, Cigdem. “Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes”. Duzce University Journal of Science and Technology 10, no. 1 (January 2022): 207-15. https://doi.org/10.29130/dubited.956216.
EndNote Sahın C (January 1, 2022) Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes. Duzce University Journal of Science and Technology 10 1 207–215.
IEEE C. Sahın, “Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes”, DÜBİTED, vol. 10, no. 1, pp. 207–215, 2022, doi: 10.29130/dubited.956216.
ISNAD Sahın, Cigdem. “Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes”. Duzce University Journal of Science and Technology 10/1 (January 2022), 207-215. https://doi.org/10.29130/dubited.956216.
JAMA Sahın C. Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes. DÜBİTED. 2022;10:207–215.
MLA Sahın, Cigdem. “Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes”. Duzce University Journal of Science and Technology, vol. 10, no. 1, 2022, pp. 207-15, doi:10.29130/dubited.956216.
Vancouver Sahın C. Synthesis, Characterization, Photophysical and Electrochemical Properties of Pyridine Based Ruthenium Complexes. DÜBİTED. 2022;10(1):207-15.