Research Article
BibTex RIS Cite

The Optimization of Cutting Parameters Using Taguchi Method in Milling of Tempered Aluminum 5754 Alloy

Year 2019, Volume: 7 Issue: 1, 45 - 60, 31.01.2019
https://doi.org/10.29130/dubited.423795

Abstract

Aluminum alloys have been widely used in plastic injection molds in the automotive and aerospace industries due to their high strength and weight ratio, and good corrosion and fatigue resistance. In this study, 5754-H111 tempered aluminum alloy piece with 80x80x30 mm dimensions was machined with face milling operation using coated and uncoated inserts. The effects of cutting parameters on surface roughness during face milling were investigated. In the experiments, different inserts (uncoated, Al2O3-TiCN-TiN coated, TiAlN Nano coated), cutting speeds (250, 350, 550 m/min), feed rates (0.1, 0.2, 0.35 mm/tooth) and cutting depths (1, 1.5, 2 mm) — each having three conditions — were used with the Taguchi L27 orthogonal array. The values obtained at the end of the experiments were evaluated using signal-to-noise ratio (S/N), variance analysis (ANOVA), three-dimensional
graphs, and regression analyses. The minimum surface roughness was obtained using the uncoated insert at 1 mm
cutting depth, 350 m/min cutting speed and 0.35 mm/tooth feed rate. The surface roughness values for these cutting
conditions were found as 0.26 μm in the calculations and measured as 0.29 μm in the verification experiments.

References

  • [1] V. Danilevsky, Manufacturing Engineering, No. 121, TMMOB publishing, Ankara, 1987.
  • [2] G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, 5th ed., New York, USA: McGraw- Hill, 1981.
  • [3] J. L. Yang and J. C. Chen, “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, vol. 17, no. 1, pp. 1–8, 2001.
  • [4] D. Vakondios, P. Kyratsis, S. Yaldız and A. Antoniadis, “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, vol. 45 no. 6, pp. 1480–1488, 2012.
  • [5] E. Kuram and B. Özçelik, “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, vol. 46, no. 6, pp. 1849–1864, 2013.
  • [6] E. M. Rubio, A. M. Camacho, J. M. Sanchez-Sola and M. Marcos, “Surface roughness of AA7050 alloy turned bars analysis of the influence of the length of machining”, Journal of Materials Processing Technology, vol.162–163, no. 1, pp. 682–689, 2005.
  • [7] A.R. Meyers and T.J. Slattery, Basic Machining Reference Handbook, Industrial Press, New York, 2001.
  • [8] E. Kuram and B. Özçelik, “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, vol. 46, no. 6, pp. 1849–1864, 2013.
  • [9] D. J. Lloyd, “Some aspects of the metallurgy of automotive al alloys”, Materials Forum, vol. 28, pp. 107-117, 2004.
  • [10] S.F. Dimin, T.J.S. Anand, R. Jamli and A. Kamely A, “Surface quality investigation of Al 6061- T6511 using TiALN soated milling tool”, International Journal of Basic & Applied Sciences IJBASIJENS, vol. 10, no. 4, pp. 55-59, 2010.
  • [11] K. Kadirgama, M. M. Noor, M. M. Rahman, M. R. M. Rejad and C.H.C. Haron, “Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”, European Journal Scientific Research, vol. 25, no. 2, pp. 250-256, 2009.
  • [12] B. T. H. T. Baharudin, M. R. İbrahim, N. İsmail, Z. Leman, M. K. A. Ariffin and D. L. Majid, “Experimental investigation of HSS face milling to AL6061 using Taguchi method”, Procedia Engineering, vol. 50, pp. 933–941, 2012.
  • [13] H. Durmuş, “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, vol. 46, no. 4, pp. 383– 388, 2012.
  • [14] A. M. Pınar, “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, vol. 38, no. 3, pp. 705–714, 2013.
  • [15] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, vol. 50, pp. 19-28, 2014.
  • [16] Ç.V. Yıldırım, T. Kıvak, M. Sarıkaya and F. Erzincanlı, “Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy Waspaloy”, Arabian Journal for Science and Engineering, vol. 42, pp. 4667-4681, 2017.
  • [17] F. Kara, “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel”, Materials Testing, vol. 59, no. 10, pp. 903-908, 2017.
  • [18] F. Kara and B. Öztürk, “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel, Sensor Review, DOI: 10.1108/SR-12-2017-0266, 2018.
  • [19] F. Kara, “Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel”, Materiali in tehnologije / Materials and technology, vol. 52, no. 2, pp. 195–200, 2018.
  • [20] M. Savaşkan, Y. Taptık ve M. Ürgen, “Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu”, ITU Dergisi, c. 3, s. 6, ss.117–128, 2004.
  • [21] K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI Learning Private Limited, New Delhi, 2012.
  • [22] C. Camposeco-Negrete, “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, Journal of Cleaner Production, vol. 53, no.53, pp. 195–203, 2013.
  • [23] İ. Asiltürk ve S. Neşeli, “Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis”, Measurement, vol. 45, no. 4, pp. 785–794, 2012.
  • [24] R. K. Roy, A. Primer on the Taguchi Method, Competitive Manufacturing Series, Van Nostrand Reinhold, New York, 1990.
  • [25] W.Y. Fowlkes and C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, New Jersey, USA: Prentice Hall, 1995.
  • [26] D. K. Baek, T. J. Ko and H.S. Kim “Optimization of feedrate in a face milling operation using a surface roughness model”, International Journal of Machine Tools & Manufacture, vol. 41, no. 3, pp. 451–462, 2001.
  • [27] M. Sarıkaya and A. Güllü, “Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL”, Journal of Cleaner Production, vol. 65, no. 1, pp. 604–616, 2014.
  • [28] T. Hill and P. Lewıcki, Methods and Applications: A Comprehensive Reference for Science, Industry, Mining, StatSoft, USA, 2006.
  • [29] N. Mandal, B. Doloi, B. Mondal and R. Das, “Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis”, Measurement, vol. 44, no. 10, pp. 2149–2155, 2011.
  • [30] Y.T. Liu, W.C. Chang ve Y. Yamagata, “A study on optimal compensation cutting for an aspheric surface using the taguchi method”, CIRP Journal of Manufacturing Science and Technology, vol. 3, pp. 40-48, 2010.
  • [31] P. J. Ross, Taguchi Techniques for Quality Engineering, 2nd ed., USA: Mc-Graw-Hill, 1996.
  • [32] A. M. Pınar, E. Atik ve U. Çavdar, “AA 7075 alüminyum alaşımının frezelenmesinde kesme hızı, ilerleme oranı, işleme deseni ve talaş derinliği işlem parametrelerinin yüzey kalitesi üzerindeki etkilerinin incelenmesi”, 2.Ulusal Tasarım İmalat ve Analiz Kongresi, Balıkesir, 2010.
  • [33] M. K. Kulekci, U. Eşme, A. K. Ekşi, Z. Koçoğlu ve N. F. Yılmaz, “En Aw 5754 (Almg3) alüminyum alaşımının frezelenmesi işleminde kesme parametrelerinin yüzey pürüzlülüğüne etkisinin incelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 32, s.2, ss. 153-160, 2017.
  • [34] D. Fratila and C. Caizar, “Application of Taguchi method to selection of optimal lubrication and conditions in face milling of AlMg3”, Journal of Cleaner Production, vol. 13, pp. 640-645, 2011.
  • [35] M. Sekmen, M. Günay ve U. Şeker, “Alüminyum alaşımlarının işlenmesinde kesme hızı ve talaş açısının yüzey pürüzlülüğü, yığıntı talaş ve yığıntı katmanı oluşumu üzerine etkisi”, Politeknik dergisi, c.18, s.3, ss. 141-148, 2015.

Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu

Year 2019, Volume: 7 Issue: 1, 45 - 60, 31.01.2019
https://doi.org/10.29130/dubited.423795

Abstract

Alüminyum alaşımları günümüzde, yüksek dayanım ve ağırlık oranı, iyi korozyon ve yorulma direnci nedeniyle,
otomotiv ve havacılık sanayinde, plastik enjeksiyon kalıplarında yaygın bir şekilde kullanılmaktadır. Bu
çalışmada, 80x80x30 mm ebatlarında 5754-H111 temperlenmiş alüminyumun alaşımına, kaplamalı ve kaplamasız
kesici uçlarla yüzey frezeleme işlemi uygulanmış ve yüzey frezeleme işlemi esnasında kesme parametrelerinin
yüzey pürüzlülüğü üzerindeki etkileri araştırılmıştır. Deneylerde Taguchi L27 ortogonal dizini ile üç faklı kesici uç
(Kaplamasız, Al2O3-TiCN-TiN kaplamalı, TiAlN Nano kaplamalı), kesme hızı (250, 350, 550 m/dak), ilerleme
oranı (0.1, 0.2, 0.35 mm/diş) ve üç faklı kesme derinliği (1, 1.5, 2 mm) kullanılmıştır. Deneyler sonunda elde
edilen değerler, sinyal-gürültü oranı (S/N), varyans analizi (ANOVA), üç boyutlu grafikler ve regresyon metodu
kullanılarak değerlendirilmiştir. Deneylerden sonra en düşük yüzey pürüzlülüğü; kaplamasız kesici uç, 1 mm
kesme derinliği, 350 m/dak kesme hızı ve 0.35 mm/diş ilerleme oranında elde edilmiştir. Bu kesme şartları için
yüzey pürüzlülük değerleri hesaplamalarda 0.26 µm olarak bulunmuş, doğrulama deneylerinde 0.29 µm olarak
ölçülmüştür.

References

  • [1] V. Danilevsky, Manufacturing Engineering, No. 121, TMMOB publishing, Ankara, 1987.
  • [2] G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, 5th ed., New York, USA: McGraw- Hill, 1981.
  • [3] J. L. Yang and J. C. Chen, “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, vol. 17, no. 1, pp. 1–8, 2001.
  • [4] D. Vakondios, P. Kyratsis, S. Yaldız and A. Antoniadis, “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, vol. 45 no. 6, pp. 1480–1488, 2012.
  • [5] E. Kuram and B. Özçelik, “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, vol. 46, no. 6, pp. 1849–1864, 2013.
  • [6] E. M. Rubio, A. M. Camacho, J. M. Sanchez-Sola and M. Marcos, “Surface roughness of AA7050 alloy turned bars analysis of the influence of the length of machining”, Journal of Materials Processing Technology, vol.162–163, no. 1, pp. 682–689, 2005.
  • [7] A.R. Meyers and T.J. Slattery, Basic Machining Reference Handbook, Industrial Press, New York, 2001.
  • [8] E. Kuram and B. Özçelik, “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, vol. 46, no. 6, pp. 1849–1864, 2013.
  • [9] D. J. Lloyd, “Some aspects of the metallurgy of automotive al alloys”, Materials Forum, vol. 28, pp. 107-117, 2004.
  • [10] S.F. Dimin, T.J.S. Anand, R. Jamli and A. Kamely A, “Surface quality investigation of Al 6061- T6511 using TiALN soated milling tool”, International Journal of Basic & Applied Sciences IJBASIJENS, vol. 10, no. 4, pp. 55-59, 2010.
  • [11] K. Kadirgama, M. M. Noor, M. M. Rahman, M. R. M. Rejad and C.H.C. Haron, “Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”, European Journal Scientific Research, vol. 25, no. 2, pp. 250-256, 2009.
  • [12] B. T. H. T. Baharudin, M. R. İbrahim, N. İsmail, Z. Leman, M. K. A. Ariffin and D. L. Majid, “Experimental investigation of HSS face milling to AL6061 using Taguchi method”, Procedia Engineering, vol. 50, pp. 933–941, 2012.
  • [13] H. Durmuş, “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, vol. 46, no. 4, pp. 383– 388, 2012.
  • [14] A. M. Pınar, “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, vol. 38, no. 3, pp. 705–714, 2013.
  • [15] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, vol. 50, pp. 19-28, 2014.
  • [16] Ç.V. Yıldırım, T. Kıvak, M. Sarıkaya and F. Erzincanlı, “Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy Waspaloy”, Arabian Journal for Science and Engineering, vol. 42, pp. 4667-4681, 2017.
  • [17] F. Kara, “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel”, Materials Testing, vol. 59, no. 10, pp. 903-908, 2017.
  • [18] F. Kara and B. Öztürk, “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel, Sensor Review, DOI: 10.1108/SR-12-2017-0266, 2018.
  • [19] F. Kara, “Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel”, Materiali in tehnologije / Materials and technology, vol. 52, no. 2, pp. 195–200, 2018.
  • [20] M. Savaşkan, Y. Taptık ve M. Ürgen, “Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu”, ITU Dergisi, c. 3, s. 6, ss.117–128, 2004.
  • [21] K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi Methods, PHI Learning Private Limited, New Delhi, 2012.
  • [22] C. Camposeco-Negrete, “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, Journal of Cleaner Production, vol. 53, no.53, pp. 195–203, 2013.
  • [23] İ. Asiltürk ve S. Neşeli, “Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis”, Measurement, vol. 45, no. 4, pp. 785–794, 2012.
  • [24] R. K. Roy, A. Primer on the Taguchi Method, Competitive Manufacturing Series, Van Nostrand Reinhold, New York, 1990.
  • [25] W.Y. Fowlkes and C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, New Jersey, USA: Prentice Hall, 1995.
  • [26] D. K. Baek, T. J. Ko and H.S. Kim “Optimization of feedrate in a face milling operation using a surface roughness model”, International Journal of Machine Tools & Manufacture, vol. 41, no. 3, pp. 451–462, 2001.
  • [27] M. Sarıkaya and A. Güllü, “Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL”, Journal of Cleaner Production, vol. 65, no. 1, pp. 604–616, 2014.
  • [28] T. Hill and P. Lewıcki, Methods and Applications: A Comprehensive Reference for Science, Industry, Mining, StatSoft, USA, 2006.
  • [29] N. Mandal, B. Doloi, B. Mondal and R. Das, “Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis”, Measurement, vol. 44, no. 10, pp. 2149–2155, 2011.
  • [30] Y.T. Liu, W.C. Chang ve Y. Yamagata, “A study on optimal compensation cutting for an aspheric surface using the taguchi method”, CIRP Journal of Manufacturing Science and Technology, vol. 3, pp. 40-48, 2010.
  • [31] P. J. Ross, Taguchi Techniques for Quality Engineering, 2nd ed., USA: Mc-Graw-Hill, 1996.
  • [32] A. M. Pınar, E. Atik ve U. Çavdar, “AA 7075 alüminyum alaşımının frezelenmesinde kesme hızı, ilerleme oranı, işleme deseni ve talaş derinliği işlem parametrelerinin yüzey kalitesi üzerindeki etkilerinin incelenmesi”, 2.Ulusal Tasarım İmalat ve Analiz Kongresi, Balıkesir, 2010.
  • [33] M. K. Kulekci, U. Eşme, A. K. Ekşi, Z. Koçoğlu ve N. F. Yılmaz, “En Aw 5754 (Almg3) alüminyum alaşımının frezelenmesi işleminde kesme parametrelerinin yüzey pürüzlülüğüne etkisinin incelenmesi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 32, s.2, ss. 153-160, 2017.
  • [34] D. Fratila and C. Caizar, “Application of Taguchi method to selection of optimal lubrication and conditions in face milling of AlMg3”, Journal of Cleaner Production, vol. 13, pp. 640-645, 2011.
  • [35] M. Sekmen, M. Günay ve U. Şeker, “Alüminyum alaşımlarının işlenmesinde kesme hızı ve talaş açısının yüzey pürüzlülüğü, yığıntı talaş ve yığıntı katmanı oluşumu üzerine etkisi”, Politeknik dergisi, c.18, s.3, ss. 141-148, 2015.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gürcan Samtaş

Salih Korucu

Publication Date January 31, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Samtaş, G., & Korucu, S. (2019). Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(1), 45-60. https://doi.org/10.29130/dubited.423795
AMA Samtaş G, Korucu S. Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu. DUBİTED. January 2019;7(1):45-60. doi:10.29130/dubited.423795
Chicago Samtaş, Gürcan, and Salih Korucu. “Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, no. 1 (January 2019): 45-60. https://doi.org/10.29130/dubited.423795.
EndNote Samtaş G, Korucu S (January 1, 2019) Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 1 45–60.
IEEE G. Samtaş and S. Korucu, “Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu”, DUBİTED, vol. 7, no. 1, pp. 45–60, 2019, doi: 10.29130/dubited.423795.
ISNAD Samtaş, Gürcan - Korucu, Salih. “Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/1 (January 2019), 45-60. https://doi.org/10.29130/dubited.423795.
JAMA Samtaş G, Korucu S. Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu. DUBİTED. 2019;7:45–60.
MLA Samtaş, Gürcan and Salih Korucu. “Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 7, no. 1, 2019, pp. 45-60, doi:10.29130/dubited.423795.
Vancouver Samtaş G, Korucu S. Temperlenmiş Alüminyum 5754 Alaşımının Frezelenmesinde Kesme Parametrelerinin Taguchi Metodu Kullanılarak Optimizasyonu. DUBİTED. 2019;7(1):45-60.