Research Article
BibTex RIS Cite

Kinematic Mapping in Semi-Euclidean 4-Space

Year 2015, Volume: 3 Issue: 1, 173 - 179, 30.01.2015

Abstract

We study the some algebraic properties of matrix associated to Hamilton operators which is defined for semiquaternions. The kinematic mapping corresponding to these operators in semi-Euclidean 4-space is the same as the kinematic mapping of Blaschke and Grünwald

References

  • Dyachkova M., On Hopf bundle analogue for semi-quaternion algebra, 10th International conference DGA, Olomouc, Czech Republic, (2007) 45-47.
  • M. Jafari, H. Molaei Some properties of matrix algebra of semi-quaternions, Accepted for publication in Konuralp Journal of Mathematics.
  • H. Mortazaasl, M. Jafari A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical science and application E-Notes, 1(2) (2013) 20-27.
  • H. Pottman J. Wallner Computational line geometry, Springer-Verlag Berlin Heidelberg New York, 2000.
  • Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands, (1997).
  • J.P. Ward, Quaternions and Cayley numbers algebra and applications, Kluwer Academic Publishers, London, (1997).

Dört Buyutlu Semi-Oklidean Uzayda kinematik dönüşümler

Year 2015, Volume: 3 Issue: 1, 173 - 179, 30.01.2015

Abstract

Semi-kuaterniyonların Hamilton opratorlarına karşılık gelen matrislerin bazı cebirsel özeliklerin araştırdık. Bu opratorlara karşılık gelen dönüşümler kinematığı dört boyutlu semi oklıd uzayında, Blaşke ve Grünwald dönüşümler kinematığı aynıdır.

References

  • Dyachkova M., On Hopf bundle analogue for semi-quaternion algebra, 10th International conference DGA, Olomouc, Czech Republic, (2007) 45-47.
  • M. Jafari, H. Molaei Some properties of matrix algebra of semi-quaternions, Accepted for publication in Konuralp Journal of Mathematics.
  • H. Mortazaasl, M. Jafari A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical science and application E-Notes, 1(2) (2013) 20-27.
  • H. Pottman J. Wallner Computational line geometry, Springer-Verlag Berlin Heidelberg New York, 2000.
  • Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands, (1997).
  • J.P. Ward, Quaternions and Cayley numbers algebra and applications, Kluwer Academic Publishers, London, (1997).
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehdi Jafarı

Publication Date January 30, 2015
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Jafarı, M. (2015). Kinematic Mapping in Semi-Euclidean 4-Space. Duzce University Journal of Science and Technology, 3(1), 173-179.
AMA Jafarı M. Kinematic Mapping in Semi-Euclidean 4-Space. DUBİTED. January 2015;3(1):173-179.
Chicago Jafarı, Mehdi. “Kinematic Mapping in Semi-Euclidean 4-Space”. Duzce University Journal of Science and Technology 3, no. 1 (January 2015): 173-79.
EndNote Jafarı M (January 1, 2015) Kinematic Mapping in Semi-Euclidean 4-Space. Duzce University Journal of Science and Technology 3 1 173–179.
IEEE M. Jafarı, “Kinematic Mapping in Semi-Euclidean 4-Space”, DUBİTED, vol. 3, no. 1, pp. 173–179, 2015.
ISNAD Jafarı, Mehdi. “Kinematic Mapping in Semi-Euclidean 4-Space”. Duzce University Journal of Science and Technology 3/1 (January 2015), 173-179.
JAMA Jafarı M. Kinematic Mapping in Semi-Euclidean 4-Space. DUBİTED. 2015;3:173–179.
MLA Jafarı, Mehdi. “Kinematic Mapping in Semi-Euclidean 4-Space”. Duzce University Journal of Science and Technology, vol. 3, no. 1, 2015, pp. 173-9.
Vancouver Jafarı M. Kinematic Mapping in Semi-Euclidean 4-Space. DUBİTED. 2015;3(1):173-9.