Research Article
BibTex RIS Cite

Asymptotic Frame Fields of Rational Bézier Curves

Year 2021, Volume: 9 Issue: 6 - ICAIAME 2021, 259 - 268, 31.12.2021
https://doi.org/10.29130/dubited.1016157

Abstract

Bézier curves are a type of curves used in computer aided design and related fields. The curves can be defined with the help of De Casteljau algorithm, which is one of the most basic elements of curve and surface design, and Bernstein polynomials, which facilitate theoretical developments. A rational Bézier curve may be evaluated by applying the de Casteljau algorithm to both numerator and denominator and finally dividing through. The curves are defined by suitable control points and corresponding scalar weights. In this work, we constitute the asymptotic orthonormal frame field of a spacelike quadratic rational Bézier curve at all points on 2 and 3-dimensional lightlike cones which are degenerate surfaces in Minkowski 3 and 4-spaces. We get the formulas of curvatures for a spacelike quadratic rational Bézier curve 2 and 3-dimensional lightlike cones.

References

  • [1] G. Farin, Curves and Surfaces for CAGD: a practical guide, Morgan Kaufmann Pub., USA, 2002.
  • [2] H. Liu, “Curves in the Lightlike Cone,” Contributions to Algebra and Geometry, vol. 45, no. 1, pp. 291-303, 2004.
  • [3] H. Liu, and M. Qingxian, “Representation Formulas of Curves in a Two-and Three-dimensional Lightlike Cone,” Results in Mathematics, vol. 59 no.3 pp. 437-451, 2011.
  • [4] R. López, “Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space,” International Electronic Journal of Geometry, vol. 7, no.1, pp. 44-107, 2014.
  • [5] D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, USA, 2005.
  • [6] B. O’Neill, Semi-Riemann Geometry with Applictions to Relativity, Academic Pres., New York, 1983.
  • [7] B. O’Neill, Elementary Differential Geometry, Academic Pres., New York, 2006. [8] H.K. Samancı, “Minkowski 3-uzayında Timelike Rasyonel Bézier Eğrilerinin Eğrilikleri Üzerine,” Bitlis Üniversitesi Fen Bilimleri Dergisi, c. 7, s. 2, ss. 243-255, 2018.
  • [9] H.K. Samancı, “Some Geometric Properties of the Spacelike Bézier Curve with a Timelike Principal Normal in Minkowski 3-space,” Cumhuriyet Science Journal, vol. 39, no. 1, pp. 71-79, 2018.
  • [10] G. Özkan Tükel, A. Yücesan, “Elastic Curves in a Two-dimensional Lightlike Cone,” International Electronic Journal of Geometry, vol. 8, no.2, pp. 1-8, 2015.
  • [11] T. Turhan, A. Yılmaz Ceylan and G. Özkan Tükel, “Rational Bézier Curves on 2-dimensional Anti de Sitter Space,” International Asian Congress on Contemporary Sciences-V, Nakhchivan, Azerbaijan, 2021, pp. 467-473.
  • [12] A. Yılmaz Ceylan, T. Turhan, and G. Özkan Tükel, “On Non-null Rational Bézier Curves on 2-dimensional de Sitter Space”, 4th International Conference on Mathematics ”An İstanbul Meeting for World Mathematicians,” İstanbul, Turkey, 2020, pp. 132.
  • [13] A. Yılmaz Ceylan, T. Turhan, and G. Özkan Tükel, “On the Geometry of Rational Bézıer Curves,” Honam Mathematical Journal, vol. 43, no. 1, pp. 88-99, 2021.

Rasyonel Bézier Eğrilerinin Asimptotik Çatı Alanları

Year 2021, Volume: 9 Issue: 6 - ICAIAME 2021, 259 - 268, 31.12.2021
https://doi.org/10.29130/dubited.1016157

Abstract

Bézier eğrileri, bilgisayar destekli tasarım ve bununla ilişkili alanlarda kullanılan bir eğri türüdür. Bu eğriler eğri ve yüzey tasarımının en temel unsurlarından biri olan De Casteljau algoritması ve teorik gelişmeleri kolaylaştıran Bernstein polinomları yardımıyla tanımlanabilir. Rasyonel bir Bézier eğrisi, hem paya hem de paydaya de Casteljau algoritması uygulanarak ve son olarak bölünerek değerlendirilebilir. Bu eğriler, uygun kontrol noktaları ve karşılık gelen skaler ağırlıklarla tanımlanır. Bu çalışmada, Minkowski 3 ve 4-uzaylarında dejenere yüzeyler olan 2 ve 3-boyutlu lightlike konilerinde bir spacelike kuadratik rasyonel Bézier eğrisinin bütün noktalarında asimptotik ortonormal çatı alanını oluşturduk. Spacelike kuadratik rasyonel Bézier eğrisi 2 ve 3-boyutlu lightlike koniler için eğrilik formüllerini elde ettik.

References

  • [1] G. Farin, Curves and Surfaces for CAGD: a practical guide, Morgan Kaufmann Pub., USA, 2002.
  • [2] H. Liu, “Curves in the Lightlike Cone,” Contributions to Algebra and Geometry, vol. 45, no. 1, pp. 291-303, 2004.
  • [3] H. Liu, and M. Qingxian, “Representation Formulas of Curves in a Two-and Three-dimensional Lightlike Cone,” Results in Mathematics, vol. 59 no.3 pp. 437-451, 2011.
  • [4] R. López, “Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space,” International Electronic Journal of Geometry, vol. 7, no.1, pp. 44-107, 2014.
  • [5] D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, USA, 2005.
  • [6] B. O’Neill, Semi-Riemann Geometry with Applictions to Relativity, Academic Pres., New York, 1983.
  • [7] B. O’Neill, Elementary Differential Geometry, Academic Pres., New York, 2006. [8] H.K. Samancı, “Minkowski 3-uzayında Timelike Rasyonel Bézier Eğrilerinin Eğrilikleri Üzerine,” Bitlis Üniversitesi Fen Bilimleri Dergisi, c. 7, s. 2, ss. 243-255, 2018.
  • [9] H.K. Samancı, “Some Geometric Properties of the Spacelike Bézier Curve with a Timelike Principal Normal in Minkowski 3-space,” Cumhuriyet Science Journal, vol. 39, no. 1, pp. 71-79, 2018.
  • [10] G. Özkan Tükel, A. Yücesan, “Elastic Curves in a Two-dimensional Lightlike Cone,” International Electronic Journal of Geometry, vol. 8, no.2, pp. 1-8, 2015.
  • [11] T. Turhan, A. Yılmaz Ceylan and G. Özkan Tükel, “Rational Bézier Curves on 2-dimensional Anti de Sitter Space,” International Asian Congress on Contemporary Sciences-V, Nakhchivan, Azerbaijan, 2021, pp. 467-473.
  • [12] A. Yılmaz Ceylan, T. Turhan, and G. Özkan Tükel, “On Non-null Rational Bézier Curves on 2-dimensional de Sitter Space”, 4th International Conference on Mathematics ”An İstanbul Meeting for World Mathematicians,” İstanbul, Turkey, 2020, pp. 132.
  • [13] A. Yılmaz Ceylan, T. Turhan, and G. Özkan Tükel, “On the Geometry of Rational Bézıer Curves,” Honam Mathematical Journal, vol. 43, no. 1, pp. 88-99, 2021.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gözde Özkan Tükel 0000-0003-1800-5718

Tunahan Turhan 0000-0002-9632-2180

Ayşe Yılmaz Ceylan 0000-0002-8051-2879

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 6 - ICAIAME 2021

Cite

APA Özkan Tükel, G., Turhan, T., & Ceylan, A. Y. (2021). Asymptotic Frame Fields of Rational Bézier Curves. Duzce University Journal of Science and Technology, 9(6), 259-268. https://doi.org/10.29130/dubited.1016157
AMA Özkan Tükel G, Turhan T, Ceylan AY. Asymptotic Frame Fields of Rational Bézier Curves. DUBİTED. December 2021;9(6):259-268. doi:10.29130/dubited.1016157
Chicago Özkan Tükel, Gözde, Tunahan Turhan, and Ayşe Yılmaz Ceylan. “Asymptotic Frame Fields of Rational Bézier Curves”. Duzce University Journal of Science and Technology 9, no. 6 (December 2021): 259-68. https://doi.org/10.29130/dubited.1016157.
EndNote Özkan Tükel G, Turhan T, Ceylan AY (December 1, 2021) Asymptotic Frame Fields of Rational Bézier Curves. Duzce University Journal of Science and Technology 9 6 259–268.
IEEE G. Özkan Tükel, T. Turhan, and A. Y. Ceylan, “Asymptotic Frame Fields of Rational Bézier Curves”, DUBİTED, vol. 9, no. 6, pp. 259–268, 2021, doi: 10.29130/dubited.1016157.
ISNAD Özkan Tükel, Gözde et al. “Asymptotic Frame Fields of Rational Bézier Curves”. Duzce University Journal of Science and Technology 9/6 (December 2021), 259-268. https://doi.org/10.29130/dubited.1016157.
JAMA Özkan Tükel G, Turhan T, Ceylan AY. Asymptotic Frame Fields of Rational Bézier Curves. DUBİTED. 2021;9:259–268.
MLA Özkan Tükel, Gözde et al. “Asymptotic Frame Fields of Rational Bézier Curves”. Duzce University Journal of Science and Technology, vol. 9, no. 6, 2021, pp. 259-68, doi:10.29130/dubited.1016157.
Vancouver Özkan Tükel G, Turhan T, Ceylan AY. Asymptotic Frame Fields of Rational Bézier Curves. DUBİTED. 2021;9(6):259-68.