Research Article
BibTex RIS Cite

Eşsonlu (Zayıf) G-Tümlenmiş Kafesler

Year 2022, Volume: 10 Issue: 1, 476 - 482, 31.01.2022
https://doi.org/10.29130/dubited.997518

Abstract

Bu çalışmada eşsonlu (zayıf) g-tümlenmiş kafesler tanımlandı ve bu kafeslerin bazı özellikleri incelendi. Eşsonlu (zayıf) g-tümlenmiş kafeslerin bölüm alt kafeslerinin de eşsonlu (zayıf) g-tümlenmiş olduğu gösterildi. Herhangi sayıda eşsonlu (zayıf) g-tümlenmiş kafeslerin supremumu da eşsonlu (zayıf) g-tümlenmiştir. Kompakt üretilmiş kafeslerde eşsonlu elemanların zayıf g-tümleyenlerinin kompakt elemanlar olarak kabul edilebileceği kanıtlandı. Bu özelliğin kompakt üretilmiş olmayan kafesler için doğru olmadığına bir örnek verildi. Eşsonlu zayıf g-tümlenmiş kompakt üretilmiş kafeslerin eşsonlu g-tümlenmiş olması için gerekli bir koşul verildi.

References

  • [1] R. Alizade and S. E. Toksoy, “Cofinitely weak supplemented lattices,” Indian J. Pure Appl. Math., vol. 40, no. 5, pp. 337-346, 2009.
  • [2] R. Alizade and S. E. Toksoy, “Cofinitely supplemented modular lattices,” Arab J Sci Eng, vol. 36, no. 6, pp. 919–923, 2011.
  • [3] G. Calugareanu, Lattice Concepts of Module Theory. Kluwer Academic Publishers, 2000.
  • [4] M. L. Galvao and P. F. Smith, “Chain conditions in modular lattices,” Coll. Math., vol. 76, no. 1, pp. 85–98, 1998.
  • [5] B. Koşar, “Cofinitely G-supplemented modules,” British Journal of Mathematics Computer Science, vol. 17, no. 4, pp. 1–6, 2016.
  • [6] B. Koşar, C. Nebiyev and A. Pekin, “A generalization of g-supplemented modules,” Miskolc Math. Notes, vol. 20, no. 1, pp. 345–352, 2019.
  • [7] C. Nebiyev and H. H. Ökten, “Weakly g-supplemented modules,” Europian J. of Pure and Appl. Math., vol. 10, no. 3, pp. 521–528, 2017.
  • [8] H. H. Ökten, “G-supplemented lattices,” Miskolc Math. Notes, vol. 22, no. 1, pp. 435–441, 2021.
  • [9] B. Stenström, “Radicals and socles of lattices,” Arch. Math., vol. XX, pp. 258–261, 1969.
  • [10] A. Walendziak, “On characterizations of atomistic lattices,” Algebra Univers, vol. 43, no. 1, pp. 31–39, 2009.

Cofinitely (Weak) G-Supplemented Lattices

Year 2022, Volume: 10 Issue: 1, 476 - 482, 31.01.2022
https://doi.org/10.29130/dubited.997518

Abstract

In this work, cofinitely (weak) g-supplemented lattices are defined and some properties of these lattices are investigated. It is shown that quotient sublattices of cofinitely (weak) g-supplemented lattices are cofinitely (weak) g-supplemented. If 〖{a_i/0} 〗_(i∈I) is a collection of cofinitely (weak) g-supplemented sublattices of L and 1=⋁_(i∈I) a_i, then L is also cofinitely (weak) g-supplemented. It is proved that without loss of generality weak g-supplements of cofinite elements in compactly generated lattices are compact. An example showing that this is not true for lattices which are not cofinitely generated is given. A condition is given under which a compactly generated cofinitely weak g-supplemented lattice is cofinitely g-supplemented.

References

  • [1] R. Alizade and S. E. Toksoy, “Cofinitely weak supplemented lattices,” Indian J. Pure Appl. Math., vol. 40, no. 5, pp. 337-346, 2009.
  • [2] R. Alizade and S. E. Toksoy, “Cofinitely supplemented modular lattices,” Arab J Sci Eng, vol. 36, no. 6, pp. 919–923, 2011.
  • [3] G. Calugareanu, Lattice Concepts of Module Theory. Kluwer Academic Publishers, 2000.
  • [4] M. L. Galvao and P. F. Smith, “Chain conditions in modular lattices,” Coll. Math., vol. 76, no. 1, pp. 85–98, 1998.
  • [5] B. Koşar, “Cofinitely G-supplemented modules,” British Journal of Mathematics Computer Science, vol. 17, no. 4, pp. 1–6, 2016.
  • [6] B. Koşar, C. Nebiyev and A. Pekin, “A generalization of g-supplemented modules,” Miskolc Math. Notes, vol. 20, no. 1, pp. 345–352, 2019.
  • [7] C. Nebiyev and H. H. Ökten, “Weakly g-supplemented modules,” Europian J. of Pure and Appl. Math., vol. 10, no. 3, pp. 521–528, 2017.
  • [8] H. H. Ökten, “G-supplemented lattices,” Miskolc Math. Notes, vol. 22, no. 1, pp. 435–441, 2021.
  • [9] B. Stenström, “Radicals and socles of lattices,” Arch. Math., vol. XX, pp. 258–261, 1969.
  • [10] A. Walendziak, “On characterizations of atomistic lattices,” Algebra Univers, vol. 43, no. 1, pp. 31–39, 2009.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sultan Eylem Toksoy 0000-0002-0286-1870

Publication Date January 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Toksoy, S. E. (2022). Cofinitely (Weak) G-Supplemented Lattices. Duzce University Journal of Science and Technology, 10(1), 476-482. https://doi.org/10.29130/dubited.997518
AMA Toksoy SE. Cofinitely (Weak) G-Supplemented Lattices. DUBİTED. January 2022;10(1):476-482. doi:10.29130/dubited.997518
Chicago Toksoy, Sultan Eylem. “Cofinitely (Weak) G-Supplemented Lattices”. Duzce University Journal of Science and Technology 10, no. 1 (January 2022): 476-82. https://doi.org/10.29130/dubited.997518.
EndNote Toksoy SE (January 1, 2022) Cofinitely (Weak) G-Supplemented Lattices. Duzce University Journal of Science and Technology 10 1 476–482.
IEEE S. E. Toksoy, “Cofinitely (Weak) G-Supplemented Lattices”, DUBİTED, vol. 10, no. 1, pp. 476–482, 2022, doi: 10.29130/dubited.997518.
ISNAD Toksoy, Sultan Eylem. “Cofinitely (Weak) G-Supplemented Lattices”. Duzce University Journal of Science and Technology 10/1 (January 2022), 476-482. https://doi.org/10.29130/dubited.997518.
JAMA Toksoy SE. Cofinitely (Weak) G-Supplemented Lattices. DUBİTED. 2022;10:476–482.
MLA Toksoy, Sultan Eylem. “Cofinitely (Weak) G-Supplemented Lattices”. Duzce University Journal of Science and Technology, vol. 10, no. 1, 2022, pp. 476-82, doi:10.29130/dubited.997518.
Vancouver Toksoy SE. Cofinitely (Weak) G-Supplemented Lattices. DUBİTED. 2022;10(1):476-82.