Research Article
BibTex RIS Cite

Experimental Investigation of the Effects of Aerated Concrete Filled Wall Window Spaces on Reinforced Concrete Frame Behavior

Year 2022, Volume: 10 Issue: 2, 652 - 664, 30.04.2022
https://doi.org/10.29130/dubited.993756

Abstract

Infill walls are building elements that are commonly used in reinforced concrete structures to separate interior spaces and to provide heat and sound insulation. Due to their low carrying capacity, they are considered as nonstructural components and are only taken into account as dead loads. However, studies have shown that infill walls significantly affect the building behavior. In addition, door and window openings are essential in infill walls for ventilation and lighting requirements. In this case, the frame behavior will also change in parallel with this. For this reason, in this study, the structural behavior of RC frames with infill walls including window openings of different sizes and voids under cyclic loads was experimentally investigated. For this purpose, 3 reinforced concrete frames with ½ scale were produced. One of them was produced without an opening, and the other two were produced in the same wall-window opening area, with different shapes and opening positions. The produced frames were tested under cyclic loads using the loading protocol suggested in FEMA 461. By using the findings obtained from the experiments, the carrying capacities, energy dissipation capacities and failure patterns of the infilled wall frames were determined. The findings revealed that the shape and position of the infill wall openings significantly changed the frame behavior.

References

  • [1] Afet ve Acil Durum Yönetimi Başkanlığı. (2021, 18 Haziran). Türkiye bina deprem yönetmeliği [Çevrimiçi]. Erişim: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
  • [2] S. Hak, P. Morandi, and G. Magenes, "Prediction of inter-storey drifts for regular RC structures with masonry infills based on bare frame modelling," Bulletin of Earthquake Engineering, vol. 16, no. 1, pp. 397-425, 2018.
  • [3] P. Ricci, M. T. De Risi, G. M. Verderame, and G. Manfredi, "Influence of infill distribution and design typology on seismic performance of low- and mid-rise RC buildings," Bulletin of Earthquake Engineering, vol. 11, no. 5, pp. 1585-1616, 2013.
  • [4] F. Braga, V. Manfredi, A. Masi, A. Salvatori, and M. Vona, "Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake," Bulletin of Earthquake Engineering, vol. 9, no. 1, pp. 307-324, 2011.
  • [5] A. T. Council, "Reducing the risks of nonstructural earthquake damage," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-69-1, 2012.
  • [6] Earthquake Engineering Research Institute. (2021, June 18) The MW 6.3 Abruzzo, Earthquake of April 6; 2009 (EERI Special Earthquake Report) [Online]. Available: http://www.reluis.it/doc/pdf/Aquila/EERI_L_Aquila_report.pdf.
  • [7] A. T. Council, "Evaluation of earthquake damaged concrete and masonry wall buildings," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-43, 2012.
  • [8] I. S. Misir, "Potential use of locked brick infill walls to decrease soft-story formation in frame buildings," Journal of Performance of Constructed Facilities, vol. 29, no. 5, pp. 04014133, 2015.
  • [9] B.S. Smith, "Lateral stiffness of infilled frames.," Journal of the Structural Division, vol. 88, no. 6, pp. 183-99, 1962.
  • [10] V. V. Bertero and J. W. Axley, "Infill panels: Their influence on seismic response of buildings," Earthquake Engineering Research Center, Berkeley, California, Rep. UCB/EERC-79/28, Sep. 1979.
  • [11] S. K. Jain and C. V. R. Murty, "Beneficial influence of masonry infill walls on seismic performance of RC frame buildings," 12th World Conference on Earthquake Engineering, 2000, pp. 1790-1796.
  • [12] M. S. Gunay and K. M. Mosalam, "Structural engineering reconnaissance of the April 6, 2009, Abruzzo, Italy, earthquake, and lessons learned," University of California, Berkeley, Rep. 2010/105, 2010.
  • [13] X. Cheng, Z. Zou, Z. Zhu, S. Zai, S. Yuan, Y. Mo, W. Chen, and J. He, "A new construction technology suitable for frame partitioned infill walls with sliding nodes and large openings: Test results," Construction and Building Materials, vol. 258, pp. 119644, 2020.
  • [14] S. Shan, S. Li, M. M. Kose, H. Sezen, and S. Wang, "Effect of partial infill walls on collapse behavior of reinforced concrete frames," Engineering Structures, vol. 197, pp. 109377, 2019.
  • [15] A. De Angelis and M. R. Pecce, "Out-of-plane structural identification of a masonry infill wall inside beam-column RC frames," Engineering Structures, vol. 173, pp. 546-558, 2018.
  • [16] B. Binici, E. Canbay, A. Aldemir, O. İsmail, U. Uzgan, Z. Eryurtlu, K. Bulbul, and A. Yakut, "Seismic behavior and improvement of autoclaved aerated concrete infill walls," Engineering Structures, vol. 193, pp. 68-81, 2019.
  • [17] M. Buitrago, E. Bertolesi, J. Sagaseta, P. A. Calderón, and J. M. Adam, "Robustness of RC building structures with infill masonry walls: Tests on a purpose-built structure," Engineering Structures, vol. 226, pp. 111384, 2021.
  • [18] M. Prakash and K. S. Satyanarayanan, "Experimental study on progressive collapse of reinforced concrete frames under a corner column removal scenario," Materials Today: Proceedings, vol. 40, pp. 569-574, 2020.
  • [19] A. Jalaeefar and A. Zargar, "Effect of infill walls on behavior of reinforced concrete special moment frames under seismic sequences," Structures, vol. 28, pp. 766-773, 2020.
  • [20] A. T. Council, "Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-58, 2007.

Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi

Year 2022, Volume: 10 Issue: 2, 652 - 664, 30.04.2022
https://doi.org/10.29130/dubited.993756

Abstract

Dolgu duvarlar, genel olarak iç mekânları bölmek, ısı ve ses yalıtımı sağlamak için betonarme yapılarda yaygın olarak kullanılan bir yapı elemanıdır. Taşıma kapasitelerinin düşük olması sebebiyle, yapısal olmayan bileşenler olarak kabul edilmekte ve sadece sabit yük olarak dikkate alınmaktadırlar. Ancak yapılan çalışmalar, dolgu duvarların yapı davranışını önemli ölçüde etkilediği görülmüştür. Bunun yanında, dolgu duvarlarda, havalandırma ve aydınlatma gereksinimleri için kapı ve pencere boşlukları bırakılmak zorundadır. Bu durumda, çerçeve davranışı da bununla paralel olarak değişiklik gösterecektir. Bu nedenle bu çalışmada, farklı boyutlarda pencere açıklıkları ve boşluklar içeren dolgu duvarlı betonarme çerçevelerin çevrimsel yükler altındaki yapısal davranışı deneysel olarak incelenmiştir. Bu amaçla 3 adet ½ ölçekli, betonarme çerçeve üretilmiştir. Bunlardan bir tanesi boşluksuz, diğer ikisi ise aynı duvar pencere boşluk alanında, farklı biçim ve boşluk konumu sahip olacak şekilde üretilmiştir. Üretilen çerçeveler, FEMA 461’de önerilen yükleme protokolü kullanılarak çevrimsel yükler altında deney tabi tutulmuşlardır. Deneylerden elde edilen bulgular kullanılarak dolgu duvarlı çerçevelerin taşıma kapasiteleri, enerji tüketme kapasiteleri ve kırılma biçimleri belirlenmiştir. Elde edilen bulgular, dolgu duvar boşluklarının biçim ve konumlarının çerçeve davranışını önemli ölçüde değiştirdiğini ortaya koymuştur. 

References

  • [1] Afet ve Acil Durum Yönetimi Başkanlığı. (2021, 18 Haziran). Türkiye bina deprem yönetmeliği [Çevrimiçi]. Erişim: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm.
  • [2] S. Hak, P. Morandi, and G. Magenes, "Prediction of inter-storey drifts for regular RC structures with masonry infills based on bare frame modelling," Bulletin of Earthquake Engineering, vol. 16, no. 1, pp. 397-425, 2018.
  • [3] P. Ricci, M. T. De Risi, G. M. Verderame, and G. Manfredi, "Influence of infill distribution and design typology on seismic performance of low- and mid-rise RC buildings," Bulletin of Earthquake Engineering, vol. 11, no. 5, pp. 1585-1616, 2013.
  • [4] F. Braga, V. Manfredi, A. Masi, A. Salvatori, and M. Vona, "Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake," Bulletin of Earthquake Engineering, vol. 9, no. 1, pp. 307-324, 2011.
  • [5] A. T. Council, "Reducing the risks of nonstructural earthquake damage," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-69-1, 2012.
  • [6] Earthquake Engineering Research Institute. (2021, June 18) The MW 6.3 Abruzzo, Earthquake of April 6; 2009 (EERI Special Earthquake Report) [Online]. Available: http://www.reluis.it/doc/pdf/Aquila/EERI_L_Aquila_report.pdf.
  • [7] A. T. Council, "Evaluation of earthquake damaged concrete and masonry wall buildings," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-43, 2012.
  • [8] I. S. Misir, "Potential use of locked brick infill walls to decrease soft-story formation in frame buildings," Journal of Performance of Constructed Facilities, vol. 29, no. 5, pp. 04014133, 2015.
  • [9] B.S. Smith, "Lateral stiffness of infilled frames.," Journal of the Structural Division, vol. 88, no. 6, pp. 183-99, 1962.
  • [10] V. V. Bertero and J. W. Axley, "Infill panels: Their influence on seismic response of buildings," Earthquake Engineering Research Center, Berkeley, California, Rep. UCB/EERC-79/28, Sep. 1979.
  • [11] S. K. Jain and C. V. R. Murty, "Beneficial influence of masonry infill walls on seismic performance of RC frame buildings," 12th World Conference on Earthquake Engineering, 2000, pp. 1790-1796.
  • [12] M. S. Gunay and K. M. Mosalam, "Structural engineering reconnaissance of the April 6, 2009, Abruzzo, Italy, earthquake, and lessons learned," University of California, Berkeley, Rep. 2010/105, 2010.
  • [13] X. Cheng, Z. Zou, Z. Zhu, S. Zai, S. Yuan, Y. Mo, W. Chen, and J. He, "A new construction technology suitable for frame partitioned infill walls with sliding nodes and large openings: Test results," Construction and Building Materials, vol. 258, pp. 119644, 2020.
  • [14] S. Shan, S. Li, M. M. Kose, H. Sezen, and S. Wang, "Effect of partial infill walls on collapse behavior of reinforced concrete frames," Engineering Structures, vol. 197, pp. 109377, 2019.
  • [15] A. De Angelis and M. R. Pecce, "Out-of-plane structural identification of a masonry infill wall inside beam-column RC frames," Engineering Structures, vol. 173, pp. 546-558, 2018.
  • [16] B. Binici, E. Canbay, A. Aldemir, O. İsmail, U. Uzgan, Z. Eryurtlu, K. Bulbul, and A. Yakut, "Seismic behavior and improvement of autoclaved aerated concrete infill walls," Engineering Structures, vol. 193, pp. 68-81, 2019.
  • [17] M. Buitrago, E. Bertolesi, J. Sagaseta, P. A. Calderón, and J. M. Adam, "Robustness of RC building structures with infill masonry walls: Tests on a purpose-built structure," Engineering Structures, vol. 226, pp. 111384, 2021.
  • [18] M. Prakash and K. S. Satyanarayanan, "Experimental study on progressive collapse of reinforced concrete frames under a corner column removal scenario," Materials Today: Proceedings, vol. 40, pp. 569-574, 2020.
  • [19] A. Jalaeefar and A. Zargar, "Effect of infill walls on behavior of reinforced concrete special moment frames under seismic sequences," Structures, vol. 28, pp. 766-773, 2020.
  • [20] A. T. Council, "Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components," Federal Emergency Management Agency, Washington, D.C., Rep. ATC-58, 2007.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Anıl Şen This is me 0000-0002-7737-1729

Batuhan Aykanat 0000-0003-3797-3773

Mehmet Emin Arslan 0000-0002-7582-638X

Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Şen, A., Aykanat, B., & Arslan, M. E. (2022). Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 652-664. https://doi.org/10.29130/dubited.993756
AMA Şen A, Aykanat B, Arslan ME. Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi. DUBİTED. April 2022;10(2):652-664. doi:10.29130/dubited.993756
Chicago Şen, Anıl, Batuhan Aykanat, and Mehmet Emin Arslan. “Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 2 (April 2022): 652-64. https://doi.org/10.29130/dubited.993756.
EndNote Şen A, Aykanat B, Arslan ME (April 1, 2022) Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 2 652–664.
IEEE A. Şen, B. Aykanat, and M. E. Arslan, “Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi”, DUBİTED, vol. 10, no. 2, pp. 652–664, 2022, doi: 10.29130/dubited.993756.
ISNAD Şen, Anıl et al. “Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/2 (April 2022), 652-664. https://doi.org/10.29130/dubited.993756.
JAMA Şen A, Aykanat B, Arslan ME. Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi. DUBİTED. 2022;10:652–664.
MLA Şen, Anıl et al. “Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 2, 2022, pp. 652-64, doi:10.29130/dubited.993756.
Vancouver Şen A, Aykanat B, Arslan ME. Gaz Beton Dolgu Duvar Pencere Boşluklarının Betonarme Çerçeve Davranışına Etkilerinin Deneysel Olarak İncelenmesi. DUBİTED. 2022;10(2):652-64.