İşlevi, bir hücrenin veya organizmanın hayatta kalabilmesi veya üreme başarısı için vazgeçilmez olan genler, esaslı genler olarak kabul edilir. Esaslı genleri esaslı olmayanlardan ayırt etmek, bir organizmanın minimum fonksiyonel gereksinimlerinin anlaşılabilmesi için genetikte kilit bir sorudur. Esaslı genler küme bilgisi, ilaç tasarlanmasında da çok önemlidir. Literatürdeki, bir protein-protein etkileşim ağındaki gen konumunun, gen esaslılığı ile ilişkili olduğunu göstermiştir. Burada, bir protein-protein etkileşimi (PPI) ağının düğüm yerleştirmelerinin gen gerekliliğini tahmin etmeye yardımcı olup olamayacağını soruyoruz. İnsan geninin esaslığını tahmin etme konusundaki sonuçlarımız, düğüm gömülümlerinin tek başına %88'e kadar AUC skoruna ulaşabileceğini göstermektedir. Bu skor, gen özelliklerini karakterize etmek için topolojik özellikleri kullanılan modellerin başarımından ve önceki çalışma sonuçlarından daha iyidir. Ayrıca, türler arası homoloji bilgisi ile birleştiğinde, bu performansın %89 AUC skoruna ulaştığını gösteriyoruz. Çalışmamız, PPI ağındaki bir proteinin düğüm gömülümlerinin, proteinlerin ağ bağlantı modellerini yakaladığını ve gen esaslılık tahminlerini geliştirdiğini gösteriyor.
Çizge gösterimleri Düğüm gömülümleri Gen esaslılığı Ağ topolojik özellikleri Protein-protein etkileşim ağı
H. İ. Kuru İhsan Doğramacı Bilkent Üniversitesi Bilgisayar Mühendisliği Programının sağladığı bursa teşekkür eder. Y. i. Tepeli TUBITAK-BIDEB 2210-A bursuna teşekkür eder. Ö. T. BAGEP bursu için Bilim Akademisine teşekkür eder.
A gene is considered essential if its function is indispensable for the viability or reproductive success of a cell or an organism. Distinguishing essential genes from non-essential ones is a fundamental question in genetics, and it is key to understanding the minimal set of functional requirements of an organism. Knowledge of the set of essential genes is also crucial in drug discovery. Several reports in the literature show that the gene location in a protein-protein interaction network is correlated with the target gene’s essentiality. Here, we ask whether the node embeddings of a protein-protein interaction (PPI) network can help predict gene essentiality. Our results on predicting human gene essentiality show that node embeddings alone can achieve up to 88% AUC score, which is better than using topological features to characterize gene properties and other previous work’s results. We also show that, when combined with homology information across species, this performance reaches 89% AUC. Our work shows that node embeddings of a protein in the PPI network capture the network connectivity patterns of the proteins and improve the gene essentiality predictions.
Graph representations Node embeddings Gene essentiality Network topological features Protein-protein interaction network
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | July 31, 2022 |
Published in Issue | Year 2022 Volume: 10 Issue: 3 |