Research Article
BibTex RIS Cite

Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi

Year 2022, Volume: 10 Issue: 3, 1241 - 1254, 31.07.2022
https://doi.org/10.29130/dubited.960072

Abstract

Yer seviyesinde konumlandırılmış AERONET ağına bağlı güneş fotometreleri ile belirlenen Aerosol Optik Derinliği (AOD), atmosferik aerosollerin izlenmesinde kullanılan temel parametredir. Kısaca, belli bir dalga boyundaki elektromanyetik enerjinin atmosferdeki aerosoller nedeniyle azalması olarak tanımlanan bu parametrenin bir bölgede mekansal ve zamansal değişimlerinin belirlenmesi o bölge atmosferinde aerosol varlığına ve özelliklerine ilişkin önemli bilgiler vermektedir. Bu çalışma kapsamında, ülkemizin de içinde yer aldığı Doğu Akdeniz bölgesinde 2008-2018 yılları arasındaki toplam 10 AERONET istasyonunda AOD değişimleri incelenmiştir. Değerlendirmeler farklı zaman dönemleri (yıllık, mevsimlik ve aylık) için ayrı ayrı yapılmıştır. Buna göre, çalışma alanı içinde AOD verilerinin mevsimlere göre farklılık gösterdiği ortaya konmuştur. İlkbahar ve yaz aylarında büyük AOD değerleri elde edilirken sonbahar ve kış aylarında daha küçük değerler görülmüştür. Türkiye’de yer alan kırsal istasyonda, kentsel istasyona göre daha büyük AOD değerleri elde edilmiştir. Özellikle yaz, ilkbahar ve sonbahar mevsimleri kırsal istasyonun Afrika ve Asya kaynaklı toz taşınımından en çok etkilendiği mevsimler olup, bu durumun istasyonda büyük AOD değerlerinin ölçülmesine neden olduğu bilinmektedir. Çalışma kapsamında değerlendirilen Türkiye ve yakın çevresinde yer alan 8 AERONET istasyonunda aylık değişimlerin birbirine benzediği, en çok veri sayısına yaz aylarında (Temmuz ve Ağustos) ulaşıldığı görülmüştür. En az veri sayıları ise kış mevsiminde Aralık ve Ocak aylarında elde edilmiştir. Diğer istasyonlardan farklı olarak toz taşınımından etkilendiği bilinen Atina (ATHENS-NOA), Kıbrıs Limasol (CUT-TEPAK), Girit adası (FORTH_CRETE) ve İskeçe (Xanthi) gibi Akdeniz Bölgesi istasyonlarında ilkbahar aylarında, Türkiye’de yer alan kırsal istasyonda olduğu gibi büyük AOD değerleri elde edilmiştir. Çalışma kapsamında elde edilen AOD verisi yardımıyla, bölgede yer seviyesindeki partikül madde konsantrasyonlarının tahminine yönelik istatistiksel tahmin modellerinin hazırlanması mümkün olabilecektir.

Supporting Institution

TÜBİTAK

Project Number

119Y005

Thanks

Bu çalışma TÜBİTAK tarafından desteklenmiştir (Proje no: 119Y005). Yer bazlı AOD verilerinin temini konusunda National Aeronautics and Space Administration (NASA)’ya teşekkür ederiz.

References

  • [1]A. I. Calvo, C. Alves, A. Castro, V. Pont, A. M. Vicente ve R. Fraile, “Research on aerosol sources and chemical composition: Past, current and emerging issues,” Atmospheric Research, vol. 120–121, pp. 1–28, 2013.
  • [2]E. Tutsak ve M. Koçak, “Long-term measurements of aerosol optical and physical properties over the Eastern Mediterranean: Hygroscopic nature and source regions,” Atmospheric Environment, vol. 207, pp. 1–15, 2019.
  • [3]E. Ozdemir, G. Tuna Tuygun ve T. Elbir, “Application of aerosol classification methods based on AERONET version 3 product over eastern Mediterranean and Black Sea,” Atmospheric Pollution Research, vol. 11, no. 12, pp. 2226–2243, 2020.
  • [4]K. L. Chan ve K. L. Chan, “Aerosol optical depths and their contributing sources in Taiwan,” Atmospheric Environment, vol. 148, pp. 364–375, 2017.
  • [5]N. Bellouin, “Aerosols: Role in Climate Change,” Encyclopedia of Atmospheric Sciences, Second Edition, pp. 76–85, 2015.
  • [6]S. Zhao, H. Zhang, S. Feng ve Q. Fu, “Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol-climate coupled system”, International Journal of Climatology, vol. 35, no. 8, pp. 1858–1866, 2015.
  • [7]T. H. Zhang ve H. Liao, “Aerosol absorption optical depth of fine-mode mineral dust in eastern China,” Atmospheric and Oceanic Science Letters, vol. 9, no. 1, pp. 7–14, 2016.
  • [8]T. Banerjee, M. Kumar, R. K. Mall ve R. S. Singh, “Airing ‘clean air’ in Clean India Mission,” Environmental Science and Pollution Research, vol. 24, no. 7, pp. 6399–6413, 2017.
  • [9]J. R. Horne ve D. Dabdub, “Impact of global climate change on ozone, particulate matter, and secondary organic aerosol concentrations in California: A model perturbation analysis,” Atmospheric Environment, vol. 153, pp. 1–17, 2017.
  • [10]Y. C. Lee, Y. F. Lam, G. Kuhlmann, M. O. Wenig, K. L.Chan, A. Hartl ve Z. Ning, “An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong,” Atmospheric Environment, vol. 80, pp. 478–487, 2013.
  • [11]F. Tsai, J. Y. Tu, S. C. Hsu ve W. N. Chen, “Case study of the Asian dust and pollutant event in spring 2006: Source, transport, and contribution to Taiwan,” Science of the Total Environment, vol. 478, pp. 163–174, 2014.
  • [12]Z. Zhang, M. Wenig, W. Zhou, T. Diehl, K. L. Chan ve L. Wang, “The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong,” Atmospheric Environment, vol. 83, pp. 145–154, 2014.
  • [13]D. Rupakheti, S. Kang, M. Bilal, J. Gong, X. Xia ve Z. Cong, “Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources,” Atmospheric Environment, vol. 207, pp. 205–214, 2019.
  • [14]L. Shen, F. Hao, M. Gao, H. Wang, B. Zhu, J. Gao, Y. Cheng ve F. Xie, “Real-time geochemistry of urban aerosol during a heavy dust episode by single-particle aerosol mass spectrometer: Spatio-temporal variability, mixing state and spectral distribution,” Particuology, vol. 53, pp. 197–207, 2020.
  • [15]M. Filonchyk, V. Hurynovich ve H. Yan, “Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua,” Geoscience Frontiers, vol. 11, no. 6, pp. 2169–2181, 2020.
  • [16]I. Kloog, M. Sorek-Hamer, A. Lyapustin, B. Coull, Y. Wang, A. C. Just, J. Schwartz ve D. M. Broday, “Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data,” Atmospheric Environment, vol. 122, pp. 409–416, 2015.
  • [17]NASA - National Aeronautics and Space Administration. (2021). Atmospheric Aerosols: What Are They, and Why Are They So Important? [Online]. Available:https://www.nasa.gov/centers/langley/news/factsheets/Aerosols.html.
  • [18]S. Ghotbi, S. Sotoudeheian ve M. Arhami, “Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model,” Atmospheric Environment, vol. 141, pp. 333–346, 2016.
  • [19]A. D. Douglas, “A Geographical Comparison of the Relationship Between Aerosol Optical Depth and Fine Particulate Matter in Indiana,” M.S. thesis, Indiana University, Indiana, 2015.
  • [20]A. K. Georgoulias, G. Alexandri, K. A. Kourtidis, J. Lelieveld, P. Zanis, U. Pöschl, R. Levy, V. Amiridis, E. Marinou ve A. Tsikerdekis, “Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean,” Atmospheric Chemistry and Physics, vol. 16, no. 21, pp. 13853–13884, 2016.
  • [21]P. Glantz, E. Freud, C. Johansson, K. J. Noone ve M. Tesche, “Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe,” Tellus, Series B: Chemical and Physical Meteorology, vol. 71, no. 1, pp. 1–21, 2019.
  • [22] J. Wei, Z. Li, Y. Peng ve L. Sun, “MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison,” Atmospheric Environment, vol. 201, pp. 428–440, 2019.
  • [23]NASA - National Aeronautics and Space Administration. (2020). AERONET Site Information Database [Online]. Available:https://aeronet.gsfc.nasa.gov/new_web/ photo_db_v3/TUBITAK_UZAY_Ankara.html.
  • [24]Y. Guo, N. Feng, S. A. Christopher, P. Kang, F. B. Zhan ve S. Hong, “Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS,” International Journal of Remote Sensing, vol. 35, no. 17, pp. 6522–6544, 2014.
  • [25]S. M. Loría-Salazar, H. A. Holmes, W. Patrick Arnott, J. C. Barnard ve H. Moosmüller, “Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012,” Atmospheric Environment, vol. 144, pp. 345–360, 2016.
  • [26]D. M. Giles, A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, I. Slutsker, T. F. Eck, B. N. Holben, J. R. Lewis, J. R. Campbell, E. J. Welton, S. V. Korkin ve A. I. Lyapustin, “Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements,” Atmospheric Measurement Techniques, vol. 12, no. 1, pp. 169–209, 2019.
  • [27]A. De Meij ve J. Lelieveld, “Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006,” Atmospheric Research, vol. 99, no. 3–4, pp. 415–433, 2011.
  • [28]M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis ve J. F. Leon, “Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations,” Atmospheric Chemistry and Physics, vol. 13, no. 18, pp. 9195–9210, 2013.
  • [29]P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, F. Dulac, W. Collins, S. Ghan, L. W. Horowitz, J. F. Lamarque, Y. H. Lee, V. Naik, T. Nagashima, D. Shindell ve R. Skeie, “A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products,” Atmospheric Measurement Techniques, vol. 6, no. 5, pp. 1287–1314, 2013.
  • [30]S. A. Logothetis, V. Salamalikis ve A. Kazantzidis, “Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3,” Atmospheric Research, vol. 239, 2020.
  • [31] S. S. Ningombam, E. J. L. Larson, U. C. Dumka, V. Estellés, M. Campanelli ve C. Steve, “Long-term (1995–2018) aerosol optical depth derived using ground based AERONET and SKYNET measurements from aerosol aged-background sites,” Atmospheric Pollution Research, vol. 10, no. 2, pp. 608–620, 2019.
  • [32]X. Xu, L. Xie, X. Yang, H. Wu, L. Cai ve P. Qi, “Aerosol optical properties at seven AERONET sites over Middle East and Eastern Mediterranean Sea,” Atmospheric Environment, vol. 243, 2020.
  • [33]N. Kubilay, S. Nickovic, C. Moulin ve F. Dulac, “An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean,” Atmospheric Environment, vol. 34, no. 8, pp. 1293–1303, 2000.
  • [34]N. Kubilay, T. Oguz, M. Koçak ve O. Torres, “Ground-based assessment of Total Ozone Mapping Spectrometer (TOMS) data for dust transport over the northeastern Mediterranean,” Global Biogeochemical Cycles, vol. 19, no. 1, pp. 1–9, 2005.
  • [35]Y.B. Öztaner, A. Kahraman, E. Çalışkan, Ş. Tilev Tanrıöver, C. Kahya, B. Aksoy, S. İncecik, S. Topçu, Z. Aslan, B. Barutçu, İ. Sezen, S. Sarıkaya ve A. Deniz, “Açık gökyüzü şartlarında güneş radyasyonunun WRF modeli ile kısa vadeli tahmininde aerosol etkisinin değerlendirilmesi,” Hava Kirliliği Araştırmaları Dergisi, c. 3, s. 1, ss. 2-11, 2013.
  • [36]O. Kahraman ve B.S. Akın, “Doğu Akdeniz havzasında sıcaklık, yağış ve aerosol değişiminin incelenmesi,” Mühendislik Bilimleri ve Tasarım Dergisi, c. 7, s. 2, ss. 244-253, 2019.
  • [37] T.K. Koçak ve F. Ebrahimi, “Uydulardan elde edilebilen aerosol optik derinlik verilerini kullanarak zemin seviyesi ince partikül konsantrasyonlarını tahmin etmek için doğrusal olmayan bir model geliştirilmesi,” Ulusal Çevre Bilimleri Araştırma Dergisi, c. 3, s. 3, s. 119-127, 2019.

Temporal and Spatial Variation of Aerosol Optical Depth Data from Sun Photometers in Turkey and its Surroundings

Year 2022, Volume: 10 Issue: 3, 1241 - 1254, 31.07.2022
https://doi.org/10.29130/dubited.960072

Abstract

Aerosol Optical Depth (AOD) is the main parameter monitored by sun photometers located at the ground in the AERONET network for the monitoring of atmospheric aerosols. AOD is defined as the reduction of electromagnetic energy of a certain wavelength due to aerosols in the atmosphere. It provides significant information about the spatial and temporal variations of aerosols and aerosol properties in a region. In this study, variation of AOD at 10 AERONET stations in the Eastern Mediterranean region including Turkey were determined between 2008-2018. Results were analyzed in different temporal scales including annual, seasonal, and monthly. The results indicated that the AOD data differed by season in the study area. In general, larger AOD values were obtained at the rural station in Turkey compared to the urban station. Especially the rural station is mostly affected by dust transport from Africa and Asia in summer, spring, and autumn. It is known that this causes large AOD values at this station. Whereas larger AOD values were obtained in the spring and summer months, smaller values were observed in the autumn and winter months. It was determined that the monthly changes were similar at 10 AERONET stations. The highest number of data was observed in the summer months (July and August). The least data numbers were obtained in December and January in the winter season. Different from other stations, stations such as Athens (ATHENS-NOA), Cyprus Limassol (CUT-TEPAK), Crete Island (FORTH_CRETE), and Xanthi (Xanthi), which are known to be affected by dust transport, showed similar results with the rural station in Turkey. They had larger AOD values mainly in the spring and summer months. Statistical models for estimation of ground-level particulate matter concentrations in the region could be established with AOD obtained by this study. 

Project Number

119Y005

References

  • [1]A. I. Calvo, C. Alves, A. Castro, V. Pont, A. M. Vicente ve R. Fraile, “Research on aerosol sources and chemical composition: Past, current and emerging issues,” Atmospheric Research, vol. 120–121, pp. 1–28, 2013.
  • [2]E. Tutsak ve M. Koçak, “Long-term measurements of aerosol optical and physical properties over the Eastern Mediterranean: Hygroscopic nature and source regions,” Atmospheric Environment, vol. 207, pp. 1–15, 2019.
  • [3]E. Ozdemir, G. Tuna Tuygun ve T. Elbir, “Application of aerosol classification methods based on AERONET version 3 product over eastern Mediterranean and Black Sea,” Atmospheric Pollution Research, vol. 11, no. 12, pp. 2226–2243, 2020.
  • [4]K. L. Chan ve K. L. Chan, “Aerosol optical depths and their contributing sources in Taiwan,” Atmospheric Environment, vol. 148, pp. 364–375, 2017.
  • [5]N. Bellouin, “Aerosols: Role in Climate Change,” Encyclopedia of Atmospheric Sciences, Second Edition, pp. 76–85, 2015.
  • [6]S. Zhao, H. Zhang, S. Feng ve Q. Fu, “Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol-climate coupled system”, International Journal of Climatology, vol. 35, no. 8, pp. 1858–1866, 2015.
  • [7]T. H. Zhang ve H. Liao, “Aerosol absorption optical depth of fine-mode mineral dust in eastern China,” Atmospheric and Oceanic Science Letters, vol. 9, no. 1, pp. 7–14, 2016.
  • [8]T. Banerjee, M. Kumar, R. K. Mall ve R. S. Singh, “Airing ‘clean air’ in Clean India Mission,” Environmental Science and Pollution Research, vol. 24, no. 7, pp. 6399–6413, 2017.
  • [9]J. R. Horne ve D. Dabdub, “Impact of global climate change on ozone, particulate matter, and secondary organic aerosol concentrations in California: A model perturbation analysis,” Atmospheric Environment, vol. 153, pp. 1–17, 2017.
  • [10]Y. C. Lee, Y. F. Lam, G. Kuhlmann, M. O. Wenig, K. L.Chan, A. Hartl ve Z. Ning, “An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong,” Atmospheric Environment, vol. 80, pp. 478–487, 2013.
  • [11]F. Tsai, J. Y. Tu, S. C. Hsu ve W. N. Chen, “Case study of the Asian dust and pollutant event in spring 2006: Source, transport, and contribution to Taiwan,” Science of the Total Environment, vol. 478, pp. 163–174, 2014.
  • [12]Z. Zhang, M. Wenig, W. Zhou, T. Diehl, K. L. Chan ve L. Wang, “The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong,” Atmospheric Environment, vol. 83, pp. 145–154, 2014.
  • [13]D. Rupakheti, S. Kang, M. Bilal, J. Gong, X. Xia ve Z. Cong, “Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources,” Atmospheric Environment, vol. 207, pp. 205–214, 2019.
  • [14]L. Shen, F. Hao, M. Gao, H. Wang, B. Zhu, J. Gao, Y. Cheng ve F. Xie, “Real-time geochemistry of urban aerosol during a heavy dust episode by single-particle aerosol mass spectrometer: Spatio-temporal variability, mixing state and spectral distribution,” Particuology, vol. 53, pp. 197–207, 2020.
  • [15]M. Filonchyk, V. Hurynovich ve H. Yan, “Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua,” Geoscience Frontiers, vol. 11, no. 6, pp. 2169–2181, 2020.
  • [16]I. Kloog, M. Sorek-Hamer, A. Lyapustin, B. Coull, Y. Wang, A. C. Just, J. Schwartz ve D. M. Broday, “Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data,” Atmospheric Environment, vol. 122, pp. 409–416, 2015.
  • [17]NASA - National Aeronautics and Space Administration. (2021). Atmospheric Aerosols: What Are They, and Why Are They So Important? [Online]. Available:https://www.nasa.gov/centers/langley/news/factsheets/Aerosols.html.
  • [18]S. Ghotbi, S. Sotoudeheian ve M. Arhami, “Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model,” Atmospheric Environment, vol. 141, pp. 333–346, 2016.
  • [19]A. D. Douglas, “A Geographical Comparison of the Relationship Between Aerosol Optical Depth and Fine Particulate Matter in Indiana,” M.S. thesis, Indiana University, Indiana, 2015.
  • [20]A. K. Georgoulias, G. Alexandri, K. A. Kourtidis, J. Lelieveld, P. Zanis, U. Pöschl, R. Levy, V. Amiridis, E. Marinou ve A. Tsikerdekis, “Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean,” Atmospheric Chemistry and Physics, vol. 16, no. 21, pp. 13853–13884, 2016.
  • [21]P. Glantz, E. Freud, C. Johansson, K. J. Noone ve M. Tesche, “Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe,” Tellus, Series B: Chemical and Physical Meteorology, vol. 71, no. 1, pp. 1–21, 2019.
  • [22] J. Wei, Z. Li, Y. Peng ve L. Sun, “MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison,” Atmospheric Environment, vol. 201, pp. 428–440, 2019.
  • [23]NASA - National Aeronautics and Space Administration. (2020). AERONET Site Information Database [Online]. Available:https://aeronet.gsfc.nasa.gov/new_web/ photo_db_v3/TUBITAK_UZAY_Ankara.html.
  • [24]Y. Guo, N. Feng, S. A. Christopher, P. Kang, F. B. Zhan ve S. Hong, “Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS,” International Journal of Remote Sensing, vol. 35, no. 17, pp. 6522–6544, 2014.
  • [25]S. M. Loría-Salazar, H. A. Holmes, W. Patrick Arnott, J. C. Barnard ve H. Moosmüller, “Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012,” Atmospheric Environment, vol. 144, pp. 345–360, 2016.
  • [26]D. M. Giles, A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, I. Slutsker, T. F. Eck, B. N. Holben, J. R. Lewis, J. R. Campbell, E. J. Welton, S. V. Korkin ve A. I. Lyapustin, “Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements,” Atmospheric Measurement Techniques, vol. 12, no. 1, pp. 169–209, 2019.
  • [27]A. De Meij ve J. Lelieveld, “Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006,” Atmospheric Research, vol. 99, no. 3–4, pp. 415–433, 2011.
  • [28]M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis ve J. F. Leon, “Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations,” Atmospheric Chemistry and Physics, vol. 13, no. 18, pp. 9195–9210, 2013.
  • [29]P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, F. Dulac, W. Collins, S. Ghan, L. W. Horowitz, J. F. Lamarque, Y. H. Lee, V. Naik, T. Nagashima, D. Shindell ve R. Skeie, “A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products,” Atmospheric Measurement Techniques, vol. 6, no. 5, pp. 1287–1314, 2013.
  • [30]S. A. Logothetis, V. Salamalikis ve A. Kazantzidis, “Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3,” Atmospheric Research, vol. 239, 2020.
  • [31] S. S. Ningombam, E. J. L. Larson, U. C. Dumka, V. Estellés, M. Campanelli ve C. Steve, “Long-term (1995–2018) aerosol optical depth derived using ground based AERONET and SKYNET measurements from aerosol aged-background sites,” Atmospheric Pollution Research, vol. 10, no. 2, pp. 608–620, 2019.
  • [32]X. Xu, L. Xie, X. Yang, H. Wu, L. Cai ve P. Qi, “Aerosol optical properties at seven AERONET sites over Middle East and Eastern Mediterranean Sea,” Atmospheric Environment, vol. 243, 2020.
  • [33]N. Kubilay, S. Nickovic, C. Moulin ve F. Dulac, “An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean,” Atmospheric Environment, vol. 34, no. 8, pp. 1293–1303, 2000.
  • [34]N. Kubilay, T. Oguz, M. Koçak ve O. Torres, “Ground-based assessment of Total Ozone Mapping Spectrometer (TOMS) data for dust transport over the northeastern Mediterranean,” Global Biogeochemical Cycles, vol. 19, no. 1, pp. 1–9, 2005.
  • [35]Y.B. Öztaner, A. Kahraman, E. Çalışkan, Ş. Tilev Tanrıöver, C. Kahya, B. Aksoy, S. İncecik, S. Topçu, Z. Aslan, B. Barutçu, İ. Sezen, S. Sarıkaya ve A. Deniz, “Açık gökyüzü şartlarında güneş radyasyonunun WRF modeli ile kısa vadeli tahmininde aerosol etkisinin değerlendirilmesi,” Hava Kirliliği Araştırmaları Dergisi, c. 3, s. 1, ss. 2-11, 2013.
  • [36]O. Kahraman ve B.S. Akın, “Doğu Akdeniz havzasında sıcaklık, yağış ve aerosol değişiminin incelenmesi,” Mühendislik Bilimleri ve Tasarım Dergisi, c. 7, s. 2, ss. 244-253, 2019.
  • [37] T.K. Koçak ve F. Ebrahimi, “Uydulardan elde edilebilen aerosol optik derinlik verilerini kullanarak zemin seviyesi ince partikül konsantrasyonlarını tahmin etmek için doğrusal olmayan bir model geliştirilmesi,” Ulusal Çevre Bilimleri Araştırma Dergisi, c. 3, s. 3, s. 119-127, 2019.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Tezcan 0000-0002-0143-3815

Selin Karslıoğlu 0000-0003-3578-0177

Gizem Tuna Tuygun 0000-0003-3001-1360

Tolga Elbir 0000-0001-6760-3955

Project Number 119Y005
Publication Date July 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Tezcan, E., Karslıoğlu, S., Tuna Tuygun, G., Elbir, T. (2022). Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(3), 1241-1254. https://doi.org/10.29130/dubited.960072
AMA Tezcan E, Karslıoğlu S, Tuna Tuygun G, Elbir T. Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi. DUBİTED. July 2022;10(3):1241-1254. doi:10.29130/dubited.960072
Chicago Tezcan, Elif, Selin Karslıoğlu, Gizem Tuna Tuygun, and Tolga Elbir. “Türkiye Ve Yakın Çevresinde Güneş Fotometreleri Ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal Ve Mekansal Değişimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 3 (July 2022): 1241-54. https://doi.org/10.29130/dubited.960072.
EndNote Tezcan E, Karslıoğlu S, Tuna Tuygun G, Elbir T (July 1, 2022) Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 3 1241–1254.
IEEE E. Tezcan, S. Karslıoğlu, G. Tuna Tuygun, and T. Elbir, “Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi”, DUBİTED, vol. 10, no. 3, pp. 1241–1254, 2022, doi: 10.29130/dubited.960072.
ISNAD Tezcan, Elif et al. “Türkiye Ve Yakın Çevresinde Güneş Fotometreleri Ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal Ve Mekansal Değişimi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/3 (July 2022), 1241-1254. https://doi.org/10.29130/dubited.960072.
JAMA Tezcan E, Karslıoğlu S, Tuna Tuygun G, Elbir T. Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi. DUBİTED. 2022;10:1241–1254.
MLA Tezcan, Elif et al. “Türkiye Ve Yakın Çevresinde Güneş Fotometreleri Ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal Ve Mekansal Değişimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 3, 2022, pp. 1241-54, doi:10.29130/dubited.960072.
Vancouver Tezcan E, Karslıoğlu S, Tuna Tuygun G, Elbir T. Türkiye ve Yakın Çevresinde Güneş Fotometreleri ile Elde Edilen Aerosol Optik Derinliği Verisinin Zamansal ve Mekansal Değişimi. DUBİTED. 2022;10(3):1241-54.