Research Article
BibTex RIS Cite

Effect of Different Friction Pendulum Bearings on Seismic Behavior of Structures

Year 2022, Volume: 10 Issue: 4, 1826 - 1837, 25.10.2022

Abstract

In this study, time-history dynamic analyses of a structure isolated with friction pendulum bearings with different friction surface number were carried out and the effects of friction surface number on the seismic behavior of the structure were investigated. For this purpose, a five-story frame structure isolated with friction pendulum bearings with single, double and three friction surfaces were modeled using three-dimensional elements with the help of the ABAQUS finite element program. Dynamic analyses were carried out taking into account an earthquake record for seismically isolated and fixed- based structures. Structural responses such as maximum story relative displacements, story accelerations and column base shear forces were compared for different isolators and fixed-base case to investigate the effects on the earthquake behavior of the structure. According to the results obtained, it was observed that the reactions in isolated structures decreased significantly compared to structures with fixed-base. When the isolators with different number of friction surfaces were compared, it was concluded that the pendulum isolator with three friction surfaces performed better than the other isolators for all considered reactions.

References

  • [1] H. Moeindarbari ve T. Taghikhany, “Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions,” Structural and Multidisciplinary Optimization, vol. 50, no. 4, pp. 701–716, 2014.
  • [2] P. Namiranian, G. Ghodrati Amiri ve S. Veismoradi, “Near-fault seismic performance of triple variable friction pendulum bearing,” Journal of Vibroengineering, vol. 18, no. 4, pp. 2293–2303, 2016.
  • [3] A.A. Sarlis ve M.C. Constantinou, “Model of triple friction pendulum bearing for general geometric and frictional parameters and for uplift conditions,” Report No. MCEER-13-0010, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY, 2013.
  • [4] V. Zayas, S. Low ve S. Mahin, 1990. “A simple pendulum technique for achieving seismic isolation,” Earthquake Spectra, vol. 6, no. 2, pp. 317–333, 1990.
  • [5] N.V. Nguyen, H.P. Hoang ve K.T. Huong, “Performance of Single Friction Pendulum bearing for isolated buildings subjected to seismic actions in Vietnam,” IOP Conference Series: Earth and Environmental Science, vol. 143, no. 1, 2018.
  • [6] D.M. Fenz ve M.C. Constantinou, “Behaviour of the double concave Friction Pendulum bearing,” Earthquake Engineering and Structural Dynamics, vol. 35, no. 11, pp. 1403–1424, 2006.
  • [7] N.D. Dao, “Seismic Response of a Full-scale 5-story Steel Frame Building Isolated by Triple Pendulum Bearings under 3D Excitations,” PhD Thesis, University of Nevada, Reno, 2012.
  • [8] D.M. Fenz ve M.C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior: Experimental verification,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 2, pp. 185–205, 2008b.
  • [9] D.M. Fenz ve M.C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior: Theory,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 2, pp. 163–183, 2008c.
  • [10] A.E. Pigouni, M.G. Castellano, S. Infanti ve G.P. Colato, “Full-scale dynamic testing of pendulum isolators (Curved surface sliders),” Soil Dynamics and Earthquake Engineering, vol.130, no.105983, 2019.
  • [11] A.H. Deringöl, “Seismic performance of steel moment frames with variable friction pendulum systems under real ground motions,” International Advanced Researches and Engineering Journal, vol. 02, no. 03, pp. 208–216, 2018.
  • [12] A.H. Deringöl ve E.M. Güneyisi, “Effect of friction pendulum bearing properties on behaviour of buildings subjected to seismic loads,” Soil Dynamics and Earthquake Engineering, vol.125, no.105746, 2019.
  • [13] P.M. Calvi, M. Moratti ve G.M. Calvi, “Seismic isolation devices based on sliding between surfaces with variable friction coefficient,” Earthquake Spectra, vol. 32, no. 4, pp. 2291–2315, 2016.
  • [14] M. Yurdakul ve Ş. Ateş, “Modeling of triple concave friction pendulum bearings for seismic isolation of buildings,” Structural Engineering and Mechanics, vol. 40, no. 3, pp. 315–334, 2011.
  • [15] M. Yurdakul, Ş. Ateş ve A.C. Altunışık, “Comparison of the dynamic responses of Gülburnu highway bridge using single and triple concave friction pendulums,” Earthquakes and Structures, vol.7, no. 4, pp. 511-525, 2014.
  • [16] ABAQUS, Analysis User’s Guide Volume IV: Elements Version 6.14, Dassault Systemes Simulia, Inc., Providence, RI, USA, 2014.
  • [17] M. Zulfakar, “Farklı Sürtünme Yüzeyli Sarkaç İzolatörlerin Yapı Deprem Davranışı Üzerindeki Etkilerinin İncelenmesi,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon, TÜRKİYE, 2021.
  • [18] R. Aguiar, G. Villarruel, P. Caiza, T. Roberto ve A. Falconí, “Implications Of Friction Coefficient Variation In The Seismic Analysis Of Structures With Triple Friction Pendulum Systems (FPS) An Application Case,” 16th World Conference on Earthquake, 16WCEE 2017, 2017.
  • [19] PEER, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • [20] M. Malekzadeh ve T. Taghikhany, “Adaptive Behavior of Double Concave Friction Pendulum Bearing and its Advantages over Friction Pendulum Systems,” Transaction A: Civil Engineering, vol. 17, no. 2, pp. 81-88, 2010.
  • [21] F. Weber, J. Distl, C. Braun, “Isolation performance assessment of adaptive behaviour of triple friction pendulum,” Journal of Civil Engineering Research, vol. 7, no. 1, pp. 17-33, 2017.

Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri

Year 2022, Volume: 10 Issue: 4, 1826 - 1837, 25.10.2022

Abstract

Bu çalışmada farklı sürtünme yüzeyi sayısına sahip sarkaç tipi izolatörler kullanılarak deprem yalıtımı sağlanan bir yapının zaman tanım alanında dinamik analizleri gerçekleştirilerek sürtünme yüzeyi sayısının yapı davranışı üzerindeki etkileri incelenmiştir. Bu amaçla beş katlı basit bir yapı ile birlikte tek, çift ve üç sürtünme yüzeyli sarkaç izolatörler ABAQUS sonlu eleman programı yardımıyla üç boyutlu elemanlar kullanılarak modellenmiştir. Dinamik analizler sismik yalıtımlı ve ankastre mesnetli yapılar için bir deprem kaydı dikkate alınarak gerçekleştirilmiştir. Maksimum kat göreli yer değiştirmeleri, kat ivmeleri ve kolon taban kesme kuvvetleri gibi yapı tepkileri farklı izolatör tipleri ve ankastre mesnetli durum için karşılaştırılarak yapının deprem davranışı üzerindeki etkileri incelenmiştir. Elde edilen sonuçlara göre izolatörlerin kullanıldığı yapılarda oluşan tepkilerin ankastre mesnetli yapılara göre önemli oranlarda azaldığı görülmüştür. Farklı sürtünme yüzeyi sayısına sahip izolatörler karşılaştırıldığında ise tüm bu tepkiler için üç sürtünme yüzeyli sarkaç izolatörün diğer izolatörlerinden daha iyi performans gösterdiği sonucuna varılmıştır. 

References

  • [1] H. Moeindarbari ve T. Taghikhany, “Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions,” Structural and Multidisciplinary Optimization, vol. 50, no. 4, pp. 701–716, 2014.
  • [2] P. Namiranian, G. Ghodrati Amiri ve S. Veismoradi, “Near-fault seismic performance of triple variable friction pendulum bearing,” Journal of Vibroengineering, vol. 18, no. 4, pp. 2293–2303, 2016.
  • [3] A.A. Sarlis ve M.C. Constantinou, “Model of triple friction pendulum bearing for general geometric and frictional parameters and for uplift conditions,” Report No. MCEER-13-0010, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY, 2013.
  • [4] V. Zayas, S. Low ve S. Mahin, 1990. “A simple pendulum technique for achieving seismic isolation,” Earthquake Spectra, vol. 6, no. 2, pp. 317–333, 1990.
  • [5] N.V. Nguyen, H.P. Hoang ve K.T. Huong, “Performance of Single Friction Pendulum bearing for isolated buildings subjected to seismic actions in Vietnam,” IOP Conference Series: Earth and Environmental Science, vol. 143, no. 1, 2018.
  • [6] D.M. Fenz ve M.C. Constantinou, “Behaviour of the double concave Friction Pendulum bearing,” Earthquake Engineering and Structural Dynamics, vol. 35, no. 11, pp. 1403–1424, 2006.
  • [7] N.D. Dao, “Seismic Response of a Full-scale 5-story Steel Frame Building Isolated by Triple Pendulum Bearings under 3D Excitations,” PhD Thesis, University of Nevada, Reno, 2012.
  • [8] D.M. Fenz ve M.C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior: Experimental verification,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 2, pp. 185–205, 2008b.
  • [9] D.M. Fenz ve M.C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior: Theory,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 2, pp. 163–183, 2008c.
  • [10] A.E. Pigouni, M.G. Castellano, S. Infanti ve G.P. Colato, “Full-scale dynamic testing of pendulum isolators (Curved surface sliders),” Soil Dynamics and Earthquake Engineering, vol.130, no.105983, 2019.
  • [11] A.H. Deringöl, “Seismic performance of steel moment frames with variable friction pendulum systems under real ground motions,” International Advanced Researches and Engineering Journal, vol. 02, no. 03, pp. 208–216, 2018.
  • [12] A.H. Deringöl ve E.M. Güneyisi, “Effect of friction pendulum bearing properties on behaviour of buildings subjected to seismic loads,” Soil Dynamics and Earthquake Engineering, vol.125, no.105746, 2019.
  • [13] P.M. Calvi, M. Moratti ve G.M. Calvi, “Seismic isolation devices based on sliding between surfaces with variable friction coefficient,” Earthquake Spectra, vol. 32, no. 4, pp. 2291–2315, 2016.
  • [14] M. Yurdakul ve Ş. Ateş, “Modeling of triple concave friction pendulum bearings for seismic isolation of buildings,” Structural Engineering and Mechanics, vol. 40, no. 3, pp. 315–334, 2011.
  • [15] M. Yurdakul, Ş. Ateş ve A.C. Altunışık, “Comparison of the dynamic responses of Gülburnu highway bridge using single and triple concave friction pendulums,” Earthquakes and Structures, vol.7, no. 4, pp. 511-525, 2014.
  • [16] ABAQUS, Analysis User’s Guide Volume IV: Elements Version 6.14, Dassault Systemes Simulia, Inc., Providence, RI, USA, 2014.
  • [17] M. Zulfakar, “Farklı Sürtünme Yüzeyli Sarkaç İzolatörlerin Yapı Deprem Davranışı Üzerindeki Etkilerinin İncelenmesi,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon, TÜRKİYE, 2021.
  • [18] R. Aguiar, G. Villarruel, P. Caiza, T. Roberto ve A. Falconí, “Implications Of Friction Coefficient Variation In The Seismic Analysis Of Structures With Triple Friction Pendulum Systems (FPS) An Application Case,” 16th World Conference on Earthquake, 16WCEE 2017, 2017.
  • [19] PEER, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • [20] M. Malekzadeh ve T. Taghikhany, “Adaptive Behavior of Double Concave Friction Pendulum Bearing and its Advantages over Friction Pendulum Systems,” Transaction A: Civil Engineering, vol. 17, no. 2, pp. 81-88, 2010.
  • [21] F. Weber, J. Distl, C. Braun, “Isolation performance assessment of adaptive behaviour of triple friction pendulum,” Journal of Civil Engineering Research, vol. 7, no. 1, pp. 17-33, 2017.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhamad Zulfakar This is me 0000-0002-3989-6516

Ali İhsan Karakaş 0000-0001-7790-3345

Publication Date October 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Zulfakar, M., & Karakaş, A. İ. (2022). Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(4), 1826-1837. https://doi.org/10.29130/dubited.960841
AMA Zulfakar M, Karakaş Aİ. Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri. DUBİTED. October 2022;10(4):1826-1837. doi:10.29130/dubited.960841
Chicago Zulfakar, Muhamad, and Ali İhsan Karakaş. “Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 4 (October 2022): 1826-37. https://doi.org/10.29130/dubited.960841.
EndNote Zulfakar M, Karakaş Aİ (October 1, 2022) Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 4 1826–1837.
IEEE M. Zulfakar and A. İ. Karakaş, “Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri”, DUBİTED, vol. 10, no. 4, pp. 1826–1837, 2022, doi: 10.29130/dubited.960841.
ISNAD Zulfakar, Muhamad - Karakaş, Ali İhsan. “Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/4 (October 2022), 1826-1837. https://doi.org/10.29130/dubited.960841.
JAMA Zulfakar M, Karakaş Aİ. Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri. DUBİTED. 2022;10:1826–1837.
MLA Zulfakar, Muhamad and Ali İhsan Karakaş. “Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 4, 2022, pp. 1826-37, doi:10.29130/dubited.960841.
Vancouver Zulfakar M, Karakaş Aİ. Farklı Sürtünmeli Sarkaç Tipi İzolatörlerin Yapı Sismik Davranışına Etkileri. DUBİTED. 2022;10(4):1826-37.