Research Article
BibTex RIS Cite

Parazitik Elemanların DC-DC Buck Dönüştürücünün PID Kontrolüne Etkisinin İncelenmesi

Year 2024, Volume: 12 Issue: 2, 696 - 708, 29.04.2024
https://doi.org/10.29130/dubited.1454306

Abstract

DC-DC dönüştürücü devreleri Elektrikli Araçlar gibi birçok elektronik cihazda gerilimi belirli düzeye ayarlamak için kullanılmaktadır. DC-DC dönüştürücülerin yaygın kullanılan türü olan Buck DC-DC dönüştürücüler giriş gerilimini düşürerek çıkış gerilimini istenen bir referans gerilim değerinde sabit tutar. Bu çalışmada, Buck DC-DC dönüştürücülerdeki parazitik elemanların PID kontrolcüler üzerindeki etkisi incelenmiştir. Parazitik elemanlar Buck dönüştürücü sistem modeli üzerinde lineer olmayan etkiye neden olmaktadır. Literatürde yapılan çalışmalar genellikle parazitik elemanlar olmaksızın Buck dönüştürücü modeli üzerinde kontrolcüler tasarlanarak çıkış gerilimi kontrol edilmektedir. Alternatif olarak, parazitik elemanların etkisi de dikkate alınan model doğrusallaştırılarak lineer kontrolcüler tasarlanmaktadır. Bunlara ek olarak, parazitik elemanların etkisiyle birlikte tam model üzerinde lineer olmayan kontrolcüler tasarlanmaktadır. Bu çalışmada ise parazitik elemanların özellikle PID gibi lineer kontrolcü üzerindeki etkisi incelenmiştir.

References

  • [1] S. Mukherjee, J. M. Ruiz, and P. Barbosa, “A high power density wide range DC–DC converter for universal electric vehicle charging,” IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1998–2012, 2023, doi: 10.1109/TPEL.2022.3217092.
  • [2] A. S. et al., “Distinguished DC-DC converter for an electric vehicle,” in 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp. 578–582. doi: 10.1109/ICCMC53470.2022.9753880.
  • [3] C. González-Castaño, C. Restrepo, F. Flores-Bahamonde, and J. Rodriguez, “A composite DC–DC converter based on the versatile buck–boost topology for electric vehicle applications,” Sensors, vol. 22, no. 14. 2022. doi: 10.3390/s22145409.
  • [4] M. Abdolahi, J. Adabi, and S. Y. M. Mousavi, “An adaptive extended kalman filter with passivity-based control for DC-DC Converter in DC microgrids supplying constant power loads,” IEEE Transactions on Industrial Electronics, vol. 71, no. 5, pp. 4873-4882, 2023, doi: 10.1109/TIE.2023.3283686.
  • [5] W. Gil-González, S. Riffo, O. D. Montoya, C. Restrepo, and J. C. Hernández, “Adaptive voltage control for second-order DC–DC Converters supplying an unknown constant power load: a generalized PBC plus damping ınjection design,” IEEE Access, vol. 11, pp. 47390–47409, 2023, doi: 10.1109/ACCESS.2023.3275083.
  • [6] R. M. Fuentes et al., “Gain-scheduled control design applied to classical dc–dc converters in photovoltaic systems and constant power loads,” Mathematics, vol. 10, no. 19. 2022. doi: 10.3390/math10193467.
  • [7] J. Hu and Z. Wang, “Sliding mode control for DC-DC converters with unknown constant power load in renewable energy systems,” in 2022 7th International Conference on Power and Renewable Energy (ICPRE), 2022, pp. 325–330. doi: 10.1109/ICPRE55555.2022.9960700.
  • [8] A. Khaligh and A. Emadi, “Modified pulse adjustment technique with variable states to control dc-dc converters operating in discontinuous conduction mode and driving constant power loads,” in 2006 1ST IEEE Conference on Industrial Electronics and Applications, 2006, pp. 1–6. doi: 10.1109/ICIEA.2006.257140.
  • [9] N. Sarrafan, N. Horiyat, J. Zarei, R. Razavi-Far, M. Saif, and T. Dragičević, “A novel fixed-time dynamic surface DC/DC SEPIC converter controller loaded by uncertain buck-based constant power loads,” IET Power Electronics, vol. 15, no. 16, pp. 1831–1842, Dec. 2022, doi: 10.1049/PEL2.12350.
  • [10] L. Palma and P. N. Enjeti, “A modular fuel cell, modular dc–dc converter concept for high performance and enhanced reliability,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1437–1443, 2009, doi: 10.1109/TPEL.2009.2012498.
  • [11] M. Babazadeh and H. Karimi, “A robust two-degree-of-freedom control strategy for an islanded microgrid,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1339–1347, 2013, doi: 10.1109/TPWRD.2013.2254138.
  • [12] G.-J. Jeong, I.-H. Kim, and Y.-I. Son, “Application of simple adaptive control to a DC/DC boost converter with load variation,” in 2009 ICCAS-SICE, 2009, pp. 1747–1751.
  • [13] C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with ınput voltage feed-forward for the two-switch buck-boost DC–DC converter,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2037–2048, 2014, doi: 10.1109/TPEL.2013.2270014.
  • [14] F. Misoc, M. M. Morcos, and J. Lookadoo, “Effect of DC-DC converter topologies and operation on the electrical performance of fuel cells,” Electric Power Components and Systems, vol. 38, no. 7, pp. 851–861, May 2010, doi: 10.1080/15325000903489777.
  • [15] J. Han, X. Gu, Y. Yang, and T. Tang, “Dynamic improvement with a feedforward control strategy of bidirectional dc-dc converter for battery charging and discharging,” Electronics, vol. 9, no. 10. 2020. doi: 10.3390/electronics9101738.
  • [16] M. S. H. Lipu et al., “Review of electric vehicle converter configurations, control schemes and optimizations: challenges and suggestions,” Electronics, vol. 10, no. 4. 2021. doi: 10.3390/electronics10040477.
  • [17] S. Chakraborty, H.-N. Vu, M. M. Hasan, D.-D. Tran, M. E. Baghdadi, and O. Hegazy, “DC-DC converter topologies for electric vehicles, plug-in hybrid electric vehicles and fast charging stations: state of the art and future trends,” Energies, vol. 12, no. 8. 2019. doi: 10.3390/en12081569.
  • [18] S. Mandal and D. Mishra, “Robust control of buck converter using h-infinity control algorithm,” Proceedings of 2018 IEEE Applied Signal Processing Conference, ASPCON 2018, pp. 163–167, 2018, doi: 10.1109/ASPCON.2018.8748623.
  • [19] M. Srinivasan and A. Kwasinski, “Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads,” International Journal of Electrical Power & Energy Systems, vol. 122, 2020, doi: 10.1016/J.IJEPES.2020.106207.
  • [20] A. A. Saafan, V. Khadkikar, M. S. El Moursi, and H. H. Zeineldin, “A new multiport dc-dc converter for dc microgrid applications,” IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 601–611, Jan. 2023, doi: 10.1109/TIA.2022.3213235.
  • [21] A. Benzaouia, F. Mesquine, M. Benhayoun, H. Schulte, and S. Georg, “Stabilization of a buck converter: a saturated LMI approach,” 2015 4th International Conference on Systems and Control, ICSC 2015, pp. 37–42, 2015, doi: 10.1109/ICoSC.2015.7152762.
  • [22] K. K. Pandey, M. Kumar, A. Kumari, and J. Kumar, “Bidirectional DC-DC buck-boost converter for battery energy storage system and PV panel” B. Das, R. Patgiri, S. Bandyopadhyay, and V. E. Balas, Eds., Singapore: Springer Singapore, vol. 206, pp. 681–693, 2021.
  • [23] A. A. A. Ismail and A. Elnady, “Advanced drive system for dc motor using multilevel dc/dc buck converter circuit,” IEEE Access, vol. 7, pp. 54167–54178, 2019, doi: 10.1109/ACCESS.2019.2912315.
  • [24] E. Guerrero, E. Guzmán, J. Linares, A. Martínez, and G. Guerrero, “FPGA-based active disturbance rejection velocity control for a parallel DC/DC buck converter-DC motor system,” IET Power Electronics, vol. 13, no. 2, pp. 356–367, 2020, doi: 10.1049/IET-PEL.2019.0832.
  • [25] M. R. Haque and M. A. Razzak, “A buck converter-based battery charging controller for electric vehicles using modified pı control system,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1–4. doi: 10.1109/IEMTRONICS52119.2021.9422646.
  • [26] I. A. Aden, H. Kahveci, and M. E. Sahin, “Design and implementation of single-input multiple-output DC-DC buck converter for electric vehicles,” Journal of Circuits, Systems and Computers, vol. 30, no. 13, 2021, doi: 10.1142/S0218126621502285.
  • [27] T. Hong, Z. Geng, K. Qi, X. Zhao, J. Ambrosio, and D. Gu, “A wide range unidirectional ısolated DC-DC converter for fuel cell electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5932–5943, 2021, doi: 10.1109/TIE.2020.2998758.
  • [28] R. Araria, K. Negadi, M. Boudiaf, and F. Marignetti, “Non-linear control of dc-dc converters for battery power management in electric vehicle application,” Przegląd Elektrotechniczny, vol. 2020, no. 3, pp. 82–88, 2020.
  • [29] M. S. Bhaskar et al., “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130–178166, 2020, doi: 10.1109/ACCESS.2020.3027041.
  • [30] X. Ren, Z. Tang, X. Ruan, J. Wei, and G. Hua, “Four switch buck-boost converter for telecom DC-DC power supply applications,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1527–1530. doi: 10.1109/APEC.2008.4522927.
  • [31] M. Salimi, J. Soltani, and A. Zakipour, “Adaptive nonlinear control of DC-DC buck/boost converters with parasitic elements consideration,” in The 2nd International Conference on Control, Instrumentation and Automation, 2011, pp. 304–309. doi: 10.1109/ICCIAutom.2011.6356674.
  • [32] M. Salimi and A. L. Eghlim, “Passivity-based control of the DC-DC buck converters in high-power applications,” in TENCON 2014 - 2014 IEEE Region 10 Conference, 2014, pp. 1–6. doi: 10.1109/TENCON.2014.7022387.
  • [33] M. Csizmadia and M. Kuczmann, “Feedback linearization with integrator of DC-DC buck converter taking into account parasitic elements,” in 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), 2021, pp. 97–101. doi: 10.1109/PEMC48073.2021.9432632.
  • [34] M. A. Qureshi, S. Musumeci, F. Torelli, A. Reatti, A. Mazza, and G. Chicco, “A novel model reference adaptive control approach investigation for power electronic converter applications,” International Journal of Electrical Power & Energy Systems, vol. 156, p. 109722, Feb. 2024, doi: 10.1016/J.IJEPES.2023.109722.
  • [35] M. Walczak and L. Bychto, “Influence of parasitic resistances on the ınput resistance of buck and boost converters in maximum power point tracking (MPPT) systems,” Electronics, vol. 10, no. 12, 2021. doi: 10.3390/electronics10121464.
  • [36] A. Luchetta, S. Manetti, M. C. Piccirilli, A. Reatti, and M. K. Kazimierczuk, “Effects of parasitic components on diode duty cycle and small-signal model of PWM DC-DC buck converter in DCM,” 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 772–777, 2015.
  • [37] J. Wang and H. S. Chung, “Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 480–487. doi: 10.1109/ECCE.2013.6646740.
  • [38] A. Reatti, F. Corti, A. Tesi, A. Torlai, and M. K. Kazimierczuk, “Effect of parasitic components on dynamic performance of power stages of DC-DC PWM buck and boost converters in CCM,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1–5. doi: 10.1109/ISCAS.2019.8702520.
  • [39] S. Bhat and H. N. Nagaraja, “Effect of parasitic elements on the performance of buck-boost converter for PV systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 4, no. 6, pp. 831–836, 2014, doi: 10.11591/IJECE.V4I6.6855.
  • [40] W. Chen et al., “Impact of parasitic elements on power loss in GaN-based low-voltage and high-current dc-dc buck converter,” in 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2018, pp. 294–298. doi: 10.1109/WiPDAAsia.2018.8734534.
  • [41] Y. I. Son and I. H. Kim, “Complementary PID controller to passivity-based nonlinear control of boost converters with ınductor resistance,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 826–834, 2012, doi: 10.1109/TCST.2011.2134099.
  • [42] M. Salimi, J. Soltani, G. A. Markadeh, and N. R. Abjadi, “Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach,” IET Power Electronics, vol. 6, no. 4, pp. 732–741, 2013, doi: https://doi.org/10.1049/iet-pel.2012.0198.
  • [43] R. Patel and R. Chudamani, “Stability analysis of the main converter supplying a constant power load in a multi-converter system considering various parasitic elements,” Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 1118–1125, 2020, doi: 10.1016/j.jestch.2020.03.007.
  • [44] C. Olalla, R. Leyva, A. El Aroudi, P. Garcés, and I. Queinnec, “LMI robust control design for boost PWM converters,” IET Power Electronics, vol. 3, no. 1, pp. 75–85, 2010, doi: 10.1049/iet-pel.2008.0271.
  • [45] F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3747–3763, 2021, doi: 10.1016/J.ASEJ.2021.03.022.
  • [46] N. Bajoria, P. Sahu, R. K. Nema, and S. Nema, “Overview of different control schemes used for controlling of DC-DC converters,” in 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 2016, pp. 75–82. doi: 10.1109/ICEPES.2016.7915909.
  • [47] D. Bhattacharyya, S. Padhee, and K. C. Pati, “Modeling of DC–DC converter using exact feedback linearization method: a discussion,” IETE Journal of Research, vol. 65, no. 6, pp. 843–854, 2019, doi: 10.1080/03772063.2018.1454345.
  • [48] S. Anusha, G. Karpagam, and E. Bhuvaneswarri, “Comparison of tuning methods of PID controller,” International Journal of Management, Information Technology and Engineering, vol. 2, no. 8, pp. 1–8, 2014.
  • [49] M. Shahrokhi and A. Zomorrodi, “Comparison of PID controller tuning methods,” Department of Chemical & Petroleum Engineering Sharif University of Technology, pp. 1–2, 2013.
  • [50] F. Alhayanı, A. S. Jaber, Ç. Aydın, And D. Ç. Atilla, “Tuning of PI controller for four-area load frequency control using elephant herding optimization,” AURUM Journal of Engineering Systems and Architecture, vol. 3, no. 2, pp. 215–225, 2019.

Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter

Year 2024, Volume: 12 Issue: 2, 696 - 708, 29.04.2024
https://doi.org/10.29130/dubited.1454306

Abstract

DC-DC converter circuits are used in many electronic devices to adjust the voltage to a certain level such as Electric Vehicle. DC-DC Buck converters, which are the most used type of DC-DC converters, reduce the input voltage and keep the output voltage constant at a desired reference voltage value. In this study, the effect of parasitic elements in Buck DC-DC converters is examined on the PID controllers. Parasitic elements cause a non-linear effect on the Buck converter system model. Studies in the literature generally control the output voltage by designing controllers on the Buck converter model without parasitic elements. Alternatively, linear controllers such as PID are designed according to the linearizing model, taking into account the effect of parasitic elements. In addition, nonlinear controllers are designed on the full model with the effect of parasitic elements. In this study, the effect of parasitic elements on linear controllers, especially PID, is examined.

References

  • [1] S. Mukherjee, J. M. Ruiz, and P. Barbosa, “A high power density wide range DC–DC converter for universal electric vehicle charging,” IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1998–2012, 2023, doi: 10.1109/TPEL.2022.3217092.
  • [2] A. S. et al., “Distinguished DC-DC converter for an electric vehicle,” in 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp. 578–582. doi: 10.1109/ICCMC53470.2022.9753880.
  • [3] C. González-Castaño, C. Restrepo, F. Flores-Bahamonde, and J. Rodriguez, “A composite DC–DC converter based on the versatile buck–boost topology for electric vehicle applications,” Sensors, vol. 22, no. 14. 2022. doi: 10.3390/s22145409.
  • [4] M. Abdolahi, J. Adabi, and S. Y. M. Mousavi, “An adaptive extended kalman filter with passivity-based control for DC-DC Converter in DC microgrids supplying constant power loads,” IEEE Transactions on Industrial Electronics, vol. 71, no. 5, pp. 4873-4882, 2023, doi: 10.1109/TIE.2023.3283686.
  • [5] W. Gil-González, S. Riffo, O. D. Montoya, C. Restrepo, and J. C. Hernández, “Adaptive voltage control for second-order DC–DC Converters supplying an unknown constant power load: a generalized PBC plus damping ınjection design,” IEEE Access, vol. 11, pp. 47390–47409, 2023, doi: 10.1109/ACCESS.2023.3275083.
  • [6] R. M. Fuentes et al., “Gain-scheduled control design applied to classical dc–dc converters in photovoltaic systems and constant power loads,” Mathematics, vol. 10, no. 19. 2022. doi: 10.3390/math10193467.
  • [7] J. Hu and Z. Wang, “Sliding mode control for DC-DC converters with unknown constant power load in renewable energy systems,” in 2022 7th International Conference on Power and Renewable Energy (ICPRE), 2022, pp. 325–330. doi: 10.1109/ICPRE55555.2022.9960700.
  • [8] A. Khaligh and A. Emadi, “Modified pulse adjustment technique with variable states to control dc-dc converters operating in discontinuous conduction mode and driving constant power loads,” in 2006 1ST IEEE Conference on Industrial Electronics and Applications, 2006, pp. 1–6. doi: 10.1109/ICIEA.2006.257140.
  • [9] N. Sarrafan, N. Horiyat, J. Zarei, R. Razavi-Far, M. Saif, and T. Dragičević, “A novel fixed-time dynamic surface DC/DC SEPIC converter controller loaded by uncertain buck-based constant power loads,” IET Power Electronics, vol. 15, no. 16, pp. 1831–1842, Dec. 2022, doi: 10.1049/PEL2.12350.
  • [10] L. Palma and P. N. Enjeti, “A modular fuel cell, modular dc–dc converter concept for high performance and enhanced reliability,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1437–1443, 2009, doi: 10.1109/TPEL.2009.2012498.
  • [11] M. Babazadeh and H. Karimi, “A robust two-degree-of-freedom control strategy for an islanded microgrid,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1339–1347, 2013, doi: 10.1109/TPWRD.2013.2254138.
  • [12] G.-J. Jeong, I.-H. Kim, and Y.-I. Son, “Application of simple adaptive control to a DC/DC boost converter with load variation,” in 2009 ICCAS-SICE, 2009, pp. 1747–1751.
  • [13] C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with ınput voltage feed-forward for the two-switch buck-boost DC–DC converter,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2037–2048, 2014, doi: 10.1109/TPEL.2013.2270014.
  • [14] F. Misoc, M. M. Morcos, and J. Lookadoo, “Effect of DC-DC converter topologies and operation on the electrical performance of fuel cells,” Electric Power Components and Systems, vol. 38, no. 7, pp. 851–861, May 2010, doi: 10.1080/15325000903489777.
  • [15] J. Han, X. Gu, Y. Yang, and T. Tang, “Dynamic improvement with a feedforward control strategy of bidirectional dc-dc converter for battery charging and discharging,” Electronics, vol. 9, no. 10. 2020. doi: 10.3390/electronics9101738.
  • [16] M. S. H. Lipu et al., “Review of electric vehicle converter configurations, control schemes and optimizations: challenges and suggestions,” Electronics, vol. 10, no. 4. 2021. doi: 10.3390/electronics10040477.
  • [17] S. Chakraborty, H.-N. Vu, M. M. Hasan, D.-D. Tran, M. E. Baghdadi, and O. Hegazy, “DC-DC converter topologies for electric vehicles, plug-in hybrid electric vehicles and fast charging stations: state of the art and future trends,” Energies, vol. 12, no. 8. 2019. doi: 10.3390/en12081569.
  • [18] S. Mandal and D. Mishra, “Robust control of buck converter using h-infinity control algorithm,” Proceedings of 2018 IEEE Applied Signal Processing Conference, ASPCON 2018, pp. 163–167, 2018, doi: 10.1109/ASPCON.2018.8748623.
  • [19] M. Srinivasan and A. Kwasinski, “Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads,” International Journal of Electrical Power & Energy Systems, vol. 122, 2020, doi: 10.1016/J.IJEPES.2020.106207.
  • [20] A. A. Saafan, V. Khadkikar, M. S. El Moursi, and H. H. Zeineldin, “A new multiport dc-dc converter for dc microgrid applications,” IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 601–611, Jan. 2023, doi: 10.1109/TIA.2022.3213235.
  • [21] A. Benzaouia, F. Mesquine, M. Benhayoun, H. Schulte, and S. Georg, “Stabilization of a buck converter: a saturated LMI approach,” 2015 4th International Conference on Systems and Control, ICSC 2015, pp. 37–42, 2015, doi: 10.1109/ICoSC.2015.7152762.
  • [22] K. K. Pandey, M. Kumar, A. Kumari, and J. Kumar, “Bidirectional DC-DC buck-boost converter for battery energy storage system and PV panel” B. Das, R. Patgiri, S. Bandyopadhyay, and V. E. Balas, Eds., Singapore: Springer Singapore, vol. 206, pp. 681–693, 2021.
  • [23] A. A. A. Ismail and A. Elnady, “Advanced drive system for dc motor using multilevel dc/dc buck converter circuit,” IEEE Access, vol. 7, pp. 54167–54178, 2019, doi: 10.1109/ACCESS.2019.2912315.
  • [24] E. Guerrero, E. Guzmán, J. Linares, A. Martínez, and G. Guerrero, “FPGA-based active disturbance rejection velocity control for a parallel DC/DC buck converter-DC motor system,” IET Power Electronics, vol. 13, no. 2, pp. 356–367, 2020, doi: 10.1049/IET-PEL.2019.0832.
  • [25] M. R. Haque and M. A. Razzak, “A buck converter-based battery charging controller for electric vehicles using modified pı control system,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2021, pp. 1–4. doi: 10.1109/IEMTRONICS52119.2021.9422646.
  • [26] I. A. Aden, H. Kahveci, and M. E. Sahin, “Design and implementation of single-input multiple-output DC-DC buck converter for electric vehicles,” Journal of Circuits, Systems and Computers, vol. 30, no. 13, 2021, doi: 10.1142/S0218126621502285.
  • [27] T. Hong, Z. Geng, K. Qi, X. Zhao, J. Ambrosio, and D. Gu, “A wide range unidirectional ısolated DC-DC converter for fuel cell electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5932–5943, 2021, doi: 10.1109/TIE.2020.2998758.
  • [28] R. Araria, K. Negadi, M. Boudiaf, and F. Marignetti, “Non-linear control of dc-dc converters for battery power management in electric vehicle application,” Przegląd Elektrotechniczny, vol. 2020, no. 3, pp. 82–88, 2020.
  • [29] M. S. Bhaskar et al., “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130–178166, 2020, doi: 10.1109/ACCESS.2020.3027041.
  • [30] X. Ren, Z. Tang, X. Ruan, J. Wei, and G. Hua, “Four switch buck-boost converter for telecom DC-DC power supply applications,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1527–1530. doi: 10.1109/APEC.2008.4522927.
  • [31] M. Salimi, J. Soltani, and A. Zakipour, “Adaptive nonlinear control of DC-DC buck/boost converters with parasitic elements consideration,” in The 2nd International Conference on Control, Instrumentation and Automation, 2011, pp. 304–309. doi: 10.1109/ICCIAutom.2011.6356674.
  • [32] M. Salimi and A. L. Eghlim, “Passivity-based control of the DC-DC buck converters in high-power applications,” in TENCON 2014 - 2014 IEEE Region 10 Conference, 2014, pp. 1–6. doi: 10.1109/TENCON.2014.7022387.
  • [33] M. Csizmadia and M. Kuczmann, “Feedback linearization with integrator of DC-DC buck converter taking into account parasitic elements,” in 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), 2021, pp. 97–101. doi: 10.1109/PEMC48073.2021.9432632.
  • [34] M. A. Qureshi, S. Musumeci, F. Torelli, A. Reatti, A. Mazza, and G. Chicco, “A novel model reference adaptive control approach investigation for power electronic converter applications,” International Journal of Electrical Power & Energy Systems, vol. 156, p. 109722, Feb. 2024, doi: 10.1016/J.IJEPES.2023.109722.
  • [35] M. Walczak and L. Bychto, “Influence of parasitic resistances on the ınput resistance of buck and boost converters in maximum power point tracking (MPPT) systems,” Electronics, vol. 10, no. 12, 2021. doi: 10.3390/electronics10121464.
  • [36] A. Luchetta, S. Manetti, M. C. Piccirilli, A. Reatti, and M. K. Kazimierczuk, “Effects of parasitic components on diode duty cycle and small-signal model of PWM DC-DC buck converter in DCM,” 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 772–777, 2015.
  • [37] J. Wang and H. S. Chung, “Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 480–487. doi: 10.1109/ECCE.2013.6646740.
  • [38] A. Reatti, F. Corti, A. Tesi, A. Torlai, and M. K. Kazimierczuk, “Effect of parasitic components on dynamic performance of power stages of DC-DC PWM buck and boost converters in CCM,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1–5. doi: 10.1109/ISCAS.2019.8702520.
  • [39] S. Bhat and H. N. Nagaraja, “Effect of parasitic elements on the performance of buck-boost converter for PV systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 4, no. 6, pp. 831–836, 2014, doi: 10.11591/IJECE.V4I6.6855.
  • [40] W. Chen et al., “Impact of parasitic elements on power loss in GaN-based low-voltage and high-current dc-dc buck converter,” in 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2018, pp. 294–298. doi: 10.1109/WiPDAAsia.2018.8734534.
  • [41] Y. I. Son and I. H. Kim, “Complementary PID controller to passivity-based nonlinear control of boost converters with ınductor resistance,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 826–834, 2012, doi: 10.1109/TCST.2011.2134099.
  • [42] M. Salimi, J. Soltani, G. A. Markadeh, and N. R. Abjadi, “Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach,” IET Power Electronics, vol. 6, no. 4, pp. 732–741, 2013, doi: https://doi.org/10.1049/iet-pel.2012.0198.
  • [43] R. Patel and R. Chudamani, “Stability analysis of the main converter supplying a constant power load in a multi-converter system considering various parasitic elements,” Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 1118–1125, 2020, doi: 10.1016/j.jestch.2020.03.007.
  • [44] C. Olalla, R. Leyva, A. El Aroudi, P. Garcés, and I. Queinnec, “LMI robust control design for boost PWM converters,” IET Power Electronics, vol. 3, no. 1, pp. 75–85, 2010, doi: 10.1049/iet-pel.2008.0271.
  • [45] F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3747–3763, 2021, doi: 10.1016/J.ASEJ.2021.03.022.
  • [46] N. Bajoria, P. Sahu, R. K. Nema, and S. Nema, “Overview of different control schemes used for controlling of DC-DC converters,” in 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 2016, pp. 75–82. doi: 10.1109/ICEPES.2016.7915909.
  • [47] D. Bhattacharyya, S. Padhee, and K. C. Pati, “Modeling of DC–DC converter using exact feedback linearization method: a discussion,” IETE Journal of Research, vol. 65, no. 6, pp. 843–854, 2019, doi: 10.1080/03772063.2018.1454345.
  • [48] S. Anusha, G. Karpagam, and E. Bhuvaneswarri, “Comparison of tuning methods of PID controller,” International Journal of Management, Information Technology and Engineering, vol. 2, no. 8, pp. 1–8, 2014.
  • [49] M. Shahrokhi and A. Zomorrodi, “Comparison of PID controller tuning methods,” Department of Chemical & Petroleum Engineering Sharif University of Technology, pp. 1–2, 2013.
  • [50] F. Alhayanı, A. S. Jaber, Ç. Aydın, And D. Ç. Atilla, “Tuning of PI controller for four-area load frequency control using elephant herding optimization,” AURUM Journal of Engineering Systems and Architecture, vol. 3, no. 2, pp. 215–225, 2019.
There are 50 citations in total.

Details

Primary Language English
Subjects Mechatronics Engineering
Journal Section Articles
Authors

Mustafa İnci 0009-0008-4252-5821

Yusuf Altun 0000-0002-2099-0959

Publication Date April 29, 2024
Submission Date March 17, 2024
Acceptance Date April 2, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA İnci, M., & Altun, Y. (2024). Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter. Duzce University Journal of Science and Technology, 12(2), 696-708. https://doi.org/10.29130/dubited.1454306
AMA İnci M, Altun Y. Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter. DUBİTED. April 2024;12(2):696-708. doi:10.29130/dubited.1454306
Chicago İnci, Mustafa, and Yusuf Altun. “Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter”. Duzce University Journal of Science and Technology 12, no. 2 (April 2024): 696-708. https://doi.org/10.29130/dubited.1454306.
EndNote İnci M, Altun Y (April 1, 2024) Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter. Duzce University Journal of Science and Technology 12 2 696–708.
IEEE M. İnci and Y. Altun, “Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter”, DUBİTED, vol. 12, no. 2, pp. 696–708, 2024, doi: 10.29130/dubited.1454306.
ISNAD İnci, Mustafa - Altun, Yusuf. “Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter”. Duzce University Journal of Science and Technology 12/2 (April 2024), 696-708. https://doi.org/10.29130/dubited.1454306.
JAMA İnci M, Altun Y. Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter. DUBİTED. 2024;12:696–708.
MLA İnci, Mustafa and Yusuf Altun. “Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter”. Duzce University Journal of Science and Technology, vol. 12, no. 2, 2024, pp. 696-08, doi:10.29130/dubited.1454306.
Vancouver İnci M, Altun Y. Investigation on the Effect of Parasitic Elements on PID Control of DC-DC Buck Converter. DUBİTED. 2024;12(2):696-708.