Review
BibTex RIS Cite

Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens

Year 2024, Volume: 12 Issue: 3, 1461 - 1478, 31.07.2024
https://doi.org/10.29130/dubited.1365178

Abstract

Changes in agricultural practices, individual diversity, the considerable size of the global food trade, immigrant and tourist circulation, with microorganism transformations have led to the formation of microorganisms that are resistant to chemicals and implementations used, especially antibiotics. Antimicrobial photodynamic therapy (aPDT) is an approach based on the interaction of a natural/synthetic photosensitizer, a suitable light source, and molecular oxygen, and the cytotoxic effect of reactive oxygen species resulting from this interaction on the target microorganism. The benefits of this method, which has found its place in medical terms by treating oral biofilms, superficial lesions, and chronic sinusitis, are limited by problems of low cell/tissue penetration, poor selectivity, non-thermal effect, and off-target damage. Despite similar practical problems in food science, developing technology is expected to encourage new studies on pathogen inactivation in food matrices, reducing the microbial load to safe levels, extending shelf life, and preventing quality loss.

References

  • [1] M. Q. Mesquita, Cristina Barrocas Dias, Maria, A. Almeida, and Maria, “Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy,” Molecules, vol. 23, no. 10, pp. 2424–2424, Sep. 2018, doi: https://doi.org/10.3390/molecules23102424.
  • [2] T. Dubey and S. Chinnathambi, “Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells,” Cytoskeleton, vol. 78, no. 6, Mar. 2021, doi: https://doi.org/10.1002/cm.21655.
  • [3] L. D. Dias, K. C. Blanco, I. S. Mfouo-Tynga, N. M. Inada, and V. S. Bagnato, “Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 45, pp. 100384, Dec. 2020, doi: https://doi.org/10.1016/j.jphotochemrev.2020.100384.
  • [4] I. R. Calori, W. Caetano, A. C. Tedesco, and N. Hioka, “Self-aggregation of verteporfin in glioblastoma multiforme cells: a static and time-resolved fluorescence study,” Dyes and Pigments, vol. 182, pp. 108598, Nov. 2020, doi: https://doi.org/10.1016/j.dyepig.2020.108598.
  • [5] A. D. Dodge and J. P. Knox, “Photosensitisers from plants,” Pesticide Science, vol. 17, no. 5, pp. 579–586, Oct. 1986, doi: https://doi.org/10.1002/ps.2780170515.
  • [6] E. Polat and K. Kang, “Natural Photosensitizers in Antimicrobial Photodynamic Therapy,” Biomedicines, vol. 9, no. 6, pp. 584, May 2021, doi: https://doi.org/10.3390/biomedicines9060584.
  • [7] I. J. Macdonald and T. J. Dougherty, “Basic principles of photodynamic therapy,” Journal of Porphyrins and Phthalocyanines (JPP), vol. 05, no. 02, pp. 105–129, Feb. 2001, doi: https://doi.org/10.1002/jpp.328.
  • [8] L. do Prado-Silva, G. T. P. Brancini, G. Ú. L. Braga, X. Liao, T. Ding, and A. S. Sant’Ana, “Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review,” Food Control, vol. 132, pp. 108527, Feb. 2022, doi: https://doi.org/10.1016/j.foodcont.2021.108527.
  • [9] G. Plotino, N. M. Grande, and M. Mercade, “Photodynamic therapy in endodontics,” International Endodontic Journal, vol. 52, no. 6, pp. 760–774, Dec. 2018, doi: https://doi.org/10.1111/iej.13057.
  • [10] A. Warrier, N. Mazumder, S. Prabhu, K. Satyamoorthy, and T. S. Murali, “Photodynamic therapy to control microbial biofilms,” Photodiagnosis and Photodynamic Therapy, vol. 33, pp. 102090, Mar. 2021, doi: https://doi.org/10.1016/j.pdpdt.2020.102090.
  • [11] T. M. S. Simões, A. L. A. Batista, J. de A. Fernandes Neto, and M. H. C. de V. Catão, “Aplicabilidade da terapia fotodinâmica na Odontopediatria,” ARCHIVES OF HEALTH INVESTIGATION, vol. 8, no. 12, Jun. 2020, doi: https://doi.org/10.21270/archi.v8i12.4639.
  • [12] M. Ribeiro, I. B. Gomes, María José Saavedra, and M. Simões, “Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections,” Letters in Applied Microbiology, vol. 75, no. 3, pp. 548–564, Sep. 2022, doi: https://doi.org/10.1111/lam.13762.
  • [13] A. P. D. Ribeiro, A.C. Pavarina, L.N. Dovigo, I. L. Brunetti, V.S. Bagnato, C. E. Vergani, and C. A. de Souza Costa, “Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts,” Lasers in Medical Science, vol. 28, no. 2, pp. 391–398, Feb. 2012, doi: https://doi.org/10.1007/s10103-012-1064-9.
  • [14] T. D. Le, P. Phasupan, and L. T. Nguyen, “Antimicrobial photodynamic efficacy of selected natural photosensitizers against food pathogens: Impacts and interrelationship of process parameters,” Photodiagnosis and Photodynamic Therapy, vol. 32, pp. 102024, Dec. 2020, doi: https://doi.org/10.1016/j.pdpdt.2020.102024.
  • [15] K.I. Dhanalekshmi, K. Sangeetha, P. Magesan, J. Johnson, X. Zhang, and K. Jayamoorthy, “Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers,” Journal of Biomolecular Structure & Dynamics, vol. 40, no. 10, pp. 4766–4773, Dec. 2020, doi: https://doi.org/10.1080/07391102.2020.1858965.
  • [16] Q. Ren, C. Yi, J. Pan, X. Sun, and X. Huang, “Smart Fe3O4@ZnO Core-Shell Nanophotosensitizers Potential for Combined Chemo and Photodynamic Skin Cancer Therapy Controlled by UVA Radiation,” International Journal of Nanomedicine, vol. 17, pp. 3385–3400, Aug. 2022, doi: https://doi.org/10.2147/ijn.s372377.
  • [17] N. Tsolekile, S. Parani, E. F. de Macedo, T. C. Lebepe, R. Maluleke, V. Ncapayi, M. C. Matoetoe, S. P. Songca, K. Conceição, D. B. Tada, and O. S. Oluwafemi, “Photodynamic Therapy and Antibacterial Activities of a Novel Synthesized Quaternary Zn-Cu-In-S/ZnS QDs- mTHPP Porphyrin Conjugate,” International Journal of Nanomedicine, vol. 17, pp. 5315–5325, Nov. 2022, doi: https://doi.org/10.2147/ijn.s382302.
  • [18] X. Liang, Z. Zou, C. Li, X. Dong, H. Yin, and G. Yan, “Effect of antibacterial photodynamic therapy on Streptococcus mutans plaque biofilm in vitro,” Journal of Innovative Optical Health Sciences, vol. 13, no. 06, Aug. 2020, doi: https://doi.org/10.1142/s1793545820500224.
  • [19] L. Gholami, S. Shahabi, M. Jazaeri, M. Hadilou, and R. Fekrazad, “Clinical applications of antimicrobial photodynamic therapy in dentistry,” Frontiers in Microbiology, vol. 13, pp. 1020995, 2022, doi: https://doi.org/10.3389/fmicb.2022.1020995.
  • [20] G. Caccianiga, G. Rey, M. Baldoni, and A. Paiusco, “Clinical, Radiographic and Microbiological Evaluation of High Level Laser Therapy, a New Photodynamic Therapy Protocol, in Peri-Implantitis Treatment; a Pilot Experience,” BioMed Research International, vol. 2016, pp. 1–8, 2016, doi: https://doi.org/10.1155/2016/6321906.
  • [21] T. Zhao, J. Song, Y. Ping, and M. Li, “The Application of Antimicrobial Photodynamic Therapy (aPDT) in the Treatment of Peri-Implantitis,” Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1–8, May 2022, doi: https://doi.org/10.1155/2022/3547398.
  • [22] T. C. Pham, V.-N. Nguyen, Y. Choi, S. Lee, and J. Yoon, “Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy,” Chemical Reviews, vol. 121, no. 21, pp. 13454–13619, Sep. 2021, doi: https://doi.org/10.1021/acs.chemrev.1c00381.
  • [23] F. Halili et al., “Rose Bengal– and Riboflavin-Mediated Photodynamic Therapy to Inhibit Methicillin-Resistant Staphylococcus aureus Keratitis Isolates,” American journal of ophthalmology. , vol. 166, pp. 194–202, Jun. 2016, doi: https://doi.org/10.1016/j.ajo.2016.03.014.
  • [24] W. Ma, C. Liu, J. Li, M. Hao, Y. Ji, and X. Zeng, “The effects of aloe emodin-mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida albicans,” Photochemical and Photobiological Sciences, vol. 19, no. 4, pp. 485–494, Apr. 2020, doi: https://doi.org/10.1039/c9pp00352e.
  • [25] M. Krupka, A. Bożek, D. Bartusik-Aebisher, G. Cieślar, and A. Kawczyk-Krupka, “Photodynamic Therapy for the Treatment of Infected Leg Ulcers—A Pilot Study,” Antibiotics, vol. 10, no. 5, pp. 506, Apr. 2021, doi: https://doi.org/10.3390/antibiotics10050506.
  • [26] A. Monjo et al., “Photodynamic Inactivation of Herpes Simplex Viruses,” Viruses, vol. 10, no. 10, pp. 532, Sep. 2018, doi: https://doi.org/10.3390/v10100532.
  • [27] M. A. Namvar, M. Vahedi, H. Abdolsamadi, A. Mirzaei, Y. Mohammadi, and F. Azizi Jalilian, “Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study,” Photodiagnosis and Photodynamic Therapy, vol. 25, pp. 87–91, Mar. 2019, doi: https://doi.org/10.1016/j.pdpdt.2018.11.011.
  • [28] A. Almeida, M. A. F. Faustino, and M. G. P. M. S. Neves, “Antimicrobial Photodynamic Therapy in the Control of COVID-19,” Antibiotics, vol. 9, no. 6, pp. 320, Jun. 2020, doi: https://doi.org/10.3390/antibiotics9060320.
  • [29] G. Ambreen et al., “Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes,” Cancers, vol. 12, no. 11, pp. 3278, Nov. 2020, doi: https://doi.org/10.3390/cancers12113278.
  • [30] V. Ghate, E. Zelinger, H. Shoyhet, and Z. Hayouka, “Inactivation of Listeria monocytogenes on paperboard, a food packaging material, using 410 nm light emitting diodes,” Food Control, vol. 96, pp. 281–290, Feb. 2019, doi: https://doi.org/10.1016/j.foodcont.2018.09.026.
  • [31] A. A. Astafiev et al., “Unprecedented Coordination-Induced Bright Red Emission from Group 12 Metal-Bound Triarylazoimidazoles,” Molecules, vol. 26, no. 6, pp. 1739–1739, Mar. 2021, doi: https://doi.org/10.3390/molecules26061739.
  • [32] P. S. Raju, Om Prakash Chauhan, and Amarinder Singh Bawa, Postharvest Handling Systems and Storage of Vegetables. Wiley, 2018, pp. 247–264. doi: https://doi.org/10.1002/9781119098935.ch10.
  • [33] L. Sheng, Z. Zhang, G. Sun, and L. Wang, “Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis,” Food Control, vol. 114, pp. 107235, Aug. 2020, doi: https://doi.org/10.1016/j.foodcont.2020.107235.
  • [34] J. Huang et al., “Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes,” Food Control, vol. 108, pp. 106886–106886, Feb. 2020, doi: https://doi.org/10.1016/j.foodcont.2019.106886.
  • [35] Y. Shi et al., “New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers,” Journal of Agricultural and Food Chemistry, vol. 69, no. 49, pp. 14961–14974, Nov. 2021, doi: https://doi.org/10.1021/acs.jafc.1c04827.
  • [36] G. Cho and J. Ha, “ErythrosineB(RedDyeNo. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice,” Journal of Food Safety, vol. 40, no. 4, May 2020, doi: https://doi.org/10.1111/jfs.12813.
  • [37] Y. Liu et al., “Enhancement of E. coli inactivation by photosensitized erythrosine-based solar disinfection under weakly acidic conditions,” Water Research, vol. 212, pp. 118125–118125, Apr. 2022, doi: https://doi.org/10.1016/j.watres.2022.118125.
  • [38] S. T. Alam, T. A. N. Le, J.-S. Park, H. C. Kwon, and K. Kang, “Antimicrobial Biophotonic Treatment of Ampicillin-Resistant Pseudomonas aeruginosa with Hypericin and Ampicillin Cotreatment Followed by Orange Light,” Pharmaceutics, vol. 11, no. 12, Dec. 2019, doi: https://doi.org/10.3390/pharmaceutics11120641.
  • [39] J. Yu, F. Zhang, J. Zhang, Q. Han, L. Song, and X. Meng, “Effect of photodynamic treatments on quality and antioxidant properties of fresh-cut potatoes,” Food Chemistry, vol. 362, pp. 130224, Nov. 2021, doi: https://doi.org/10.1016/j.foodchem.2021.130224.
  • [40] L. Su et al., “Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging,” International Journal of Biological Macromolecules, vol. 172, pp. 231–240, Mar. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.01.056.
  • [41] T. D. Le, P. Phasupan, K. Visaruthaphong, P. Chouwatat, V. Thi Thu, and L. T. Nguyen, “Development of an antimicrobial photodynamic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) packaging film for food preservation,” Food Packaging and Shelf Life, vol. 30, pp. 100749, Dec. 2021, doi: https://doi.org/10.1016/j.fpsl.2021.100749.
  • [42] D.-K. Kim, H.-S. Kim, and D.-H. Kang, “Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. Typhimurium in apple juice,” Innovative Food Science and Emerging Technologies, vol. 78, pp. 103014–103014, Jun. 2022, doi: https://doi.org/10.1016/j.ifset.2022.103014.
  • [43] Y. Gao et al., “Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters,” Photodiagnosis and Photodynamic Therapy, vol. 26, pp. 244–251, Jun. 2019, doi: https://doi.org/10.1016/j.pdpdt.2019.04.002.
  • [44] M.-J. Kim, W. S. Bang, and H.-G. Yuk, “405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration,” Food Microbiology, vol. 62, pp. 124–132, Apr. 2017, doi: https://doi.org/10.1016/j.fm.2016.10.002.
  • [45] K. Aponiene, E. Paskeviciute, I. Reklaitis, and Z. Luksiene, “Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments,” Journal of Food Engineering, vol. 144, pp. 29–35, Jan. 2015, doi: https://doi.org/10.1016/j.jfoodeng.2014.07.012.
  • [46] H. Li et al., “Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality,” LWT, vol. 146, pp. 111462, Jul. 2021, doi: https://doi.org/10.1016/j.lwt.2021.111462.
  • [47] T. Q. Corrêa et al., “Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit,” Photodiagnosis and Photodynamic Therapy, vol. 30, pp. 101678, Jun. 2020, doi: https://doi.org/10.1016/j.pdpdt.2020.101678.
  • [48] L. S. Herculano et al., “Antimicrobial curcumin-mediated photodynamic inactivation of bacteria in natural bovine casing,” Photodiagnosis and Photodynamic Therapy, vol. 40, pp. 103173–103173, Dec. 2022, doi: https://doi.org/10.1016/j.pdpdt.2022.103173.
  • [49] Y. Yuan et al., “Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices,” Molecules, vol. 27, no. 20, pp. 7136–7136, Oct. 2022, doi: https://doi.org/10.3390/molecules27207136.
  • [50] W.-M. Gu, D. Liú, and J. Sun, “Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams,” International Journal of Food Microbiology, vol. 378, pp. 109816–109816, Oct. 2022, doi: https://doi.org/10.1016/j.ijfoodmicro.2022.109816.
  • [51] J. Wu, H. Mou, C. Xue, A. W. Leung, C. Xu, and Q.-J. Tang, “Photodynamic effect of curcumin on Vibrio parahaemolyticus,” Photodiagnosis and Photodynamic Therapy, vol. 15, pp. 34–39, Sep. 2016, doi: https://doi.org/10.1016/j.pdpdt.2016.05.004.
  • [52] S. Rafeeq, S. Shiroodi, M. H. Schwarz, N. Nitin, and R. Ovissipour, “Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-Mediated Photosensitization and Nanobubble-Ultrasonication Approaches,” Foods, vol. 9, no. 9, pp. 1306, Sep. 2020, doi: https://doi.org/10.3390/foods9091306.
  • [53] Y. Lin et al., “Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon,” Molecules, vol. 24, no. 13, pp. 2374, Jan. 2019, doi: https://doi.org/10.3390/molecules24132374.
  • [54] J. Gao, W. Srichamnong, W. Chathiran, and K. R. Matthews, “Influences of photosensitizer curcumin on microbial survival and physicochemical properties of chicken during storage,” Poultry Science, vol. 102, no. 2, pp. 102417, Feb. 2023, doi: https://doi.org/10.1016/j.psj.2022.102417.
  • [55] B. A. Temba, M. T. Fletcher, G. P. Fox, J. Harvey, S. A. Okoth, and Y. Sultanbawa, “Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels,” Food Microbiology, vol. 82, pp. 82–88, Sep. 2019, doi: https://doi.org/10.1016/j.fm.2018.12.013.
  • [56] N. Mukubesa, R. Nguenha, H. T. Hong, M. Seididamyeh, M. E. Netzel, and Y. Sultanbawa, “Curcumin-Based Photosensitization, a Green Treatment in Inactivating Aspergillus flavus Spores in Peanuts,” Foods, vol. 11, no. 3, pp. 354, Jan. 2022, doi: https://doi.org/10.3390/foods11030354.
  • [57] Z. Wang, Y. Jia, W. Li, and M. Zhang, “Antimicrobial photodynamic inactivation with curcumin against Staphylococcus saprophyticus, in vitro and on fresh dough sheet,” LWT, vol. 147, pp. 111567, Jul. 2021, doi: https://doi.org/10.1016/j.lwt.2021.111567.
  • [58] J. Hu et al., “Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA,” Food Research International, vol. 111, pp. 265–271, Sep. 2018, doi: https://doi.org/10.1016/j.foodres.2018.05.042.
  • [59] A. Srimagal, T. Ramesh, and J. K. Sahu, “Effect of light emitting diode treatment on inactivation of Escherichia coli in milk,” LWT-Food Science and Technology, vol. 71, pp. 378–385, Sep. 2016, doi: https://doi.org/10.1016/j.lwt.2016.04.028.
  • [60] Y. Zou et al., “Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple,” LWT, vol. 141, pp. 110902, Apr. 2021, doi: https://doi.org/10.1016/j.lwt.2021.110902.
  • [61] R. Tao, F. Zhang, Q. Tang, C. Xu, Z.-J. Ni, and X. Meng, “Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples,” Food Chemistry, vol. 274, pp. 415–421, Feb. 2019, doi: https://doi.org/10.1016/j.foodchem.2018.08.042.
  • [62] Y. Zhang, Z. Ding, C. Shao, and J. Xie, “Chlorophyllin-Based 405 nm Light Photodynamic Improved Fresh-Cut Pakchoi Quality at Postharvest and Inhibited the Formation of Biofilm,” Foods, vol. 11, no. 16, pp. 2541–2541, Aug. 2022, doi: https://doi.org/10.3390/foods11162541.
  • [63] Leonardo do Prado-Silva et al., “Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation,” International Journal of Food Microbiology, vol. 333, pp. 108803–108803, Nov. 2020, doi: https://doi.org/10.1016/j.ijfoodmicro.2020.108803.
  • [64] E. Bonin et al., “Photodynamic inactivation of foodborne bacteria by eosin Y,” Journal of Applied Microbiology, vol. 124, no. 6, pp. 1617–1628, Mar. 2018, doi: https://doi.org/10.1111/jam.13727.
  • [65] In-Hwan Lee, S.-H. Kim, and D.-H. Kang, “Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes,” Current research in food science, vol. 6, pp. 100428–100428, Jan. 2023, doi: https://doi.org/10.1016/j.crfs.2022.100428.

Antimikrobiyal Fotodinamik Terapi: Gıda Kaynaklı Patojenler için Yeni Konsept

Year 2024, Volume: 12 Issue: 3, 1461 - 1478, 31.07.2024
https://doi.org/10.29130/dubited.1365178

Abstract

Tarımsal uygulamalardaki değişiklikler, bireysel çeşitlilik, küresel gıda ticaretinin hatırı sayılır büyüklüğü, göçmen ve turist dolaşımı, mikroorganizma dönüşümleri ile başta antibiyotikler olmak üzere kimyasallara ve kullanılan uygulamalara karşı dirençli mikroorganizmaların oluşmasına yol açmıştır. Antimikrobiyal fotodinamik tedavi (aPDT), doğal/sentetik bir ışığa duyarlılaştırıcı, uygun bir ışık kaynağı ve moleküler oksijenin etkileşimi ile bu etkileşim sonucu ortaya çıkan reaktif oksijen türlerinin hedef mikroorganizma üzerinde sitotoksik etkisine dayanan bir yaklaşımdır. Oral biyofilmleri, yüzeysel lezyonları ve kronik sinüziti tedavi ederek tıbbi anlamda kendine yer bulan bu yöntemin faydaları, düşük hücre/doku penetrasyonu, zayıf seçicilik, termal olmayan etki ve hedef dışı hasar sorunları nedeniyle sınırlıdır. Gıda bilimindeki benzer uygulamaya yönelik sorunlara rağmen gelişen teknolojinin, gıda matrislerinde patojen inaktivasyonu, mikrobiyal yükün güvenli seviyelere indirilmesi, raf ömrünün uzatılması ve kalite kaybının önlenmesi konularında yeni çalışmaları teşvik etmesi beklenmektedir.

References

  • [1] M. Q. Mesquita, Cristina Barrocas Dias, Maria, A. Almeida, and Maria, “Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy,” Molecules, vol. 23, no. 10, pp. 2424–2424, Sep. 2018, doi: https://doi.org/10.3390/molecules23102424.
  • [2] T. Dubey and S. Chinnathambi, “Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells,” Cytoskeleton, vol. 78, no. 6, Mar. 2021, doi: https://doi.org/10.1002/cm.21655.
  • [3] L. D. Dias, K. C. Blanco, I. S. Mfouo-Tynga, N. M. Inada, and V. S. Bagnato, “Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 45, pp. 100384, Dec. 2020, doi: https://doi.org/10.1016/j.jphotochemrev.2020.100384.
  • [4] I. R. Calori, W. Caetano, A. C. Tedesco, and N. Hioka, “Self-aggregation of verteporfin in glioblastoma multiforme cells: a static and time-resolved fluorescence study,” Dyes and Pigments, vol. 182, pp. 108598, Nov. 2020, doi: https://doi.org/10.1016/j.dyepig.2020.108598.
  • [5] A. D. Dodge and J. P. Knox, “Photosensitisers from plants,” Pesticide Science, vol. 17, no. 5, pp. 579–586, Oct. 1986, doi: https://doi.org/10.1002/ps.2780170515.
  • [6] E. Polat and K. Kang, “Natural Photosensitizers in Antimicrobial Photodynamic Therapy,” Biomedicines, vol. 9, no. 6, pp. 584, May 2021, doi: https://doi.org/10.3390/biomedicines9060584.
  • [7] I. J. Macdonald and T. J. Dougherty, “Basic principles of photodynamic therapy,” Journal of Porphyrins and Phthalocyanines (JPP), vol. 05, no. 02, pp. 105–129, Feb. 2001, doi: https://doi.org/10.1002/jpp.328.
  • [8] L. do Prado-Silva, G. T. P. Brancini, G. Ú. L. Braga, X. Liao, T. Ding, and A. S. Sant’Ana, “Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review,” Food Control, vol. 132, pp. 108527, Feb. 2022, doi: https://doi.org/10.1016/j.foodcont.2021.108527.
  • [9] G. Plotino, N. M. Grande, and M. Mercade, “Photodynamic therapy in endodontics,” International Endodontic Journal, vol. 52, no. 6, pp. 760–774, Dec. 2018, doi: https://doi.org/10.1111/iej.13057.
  • [10] A. Warrier, N. Mazumder, S. Prabhu, K. Satyamoorthy, and T. S. Murali, “Photodynamic therapy to control microbial biofilms,” Photodiagnosis and Photodynamic Therapy, vol. 33, pp. 102090, Mar. 2021, doi: https://doi.org/10.1016/j.pdpdt.2020.102090.
  • [11] T. M. S. Simões, A. L. A. Batista, J. de A. Fernandes Neto, and M. H. C. de V. Catão, “Aplicabilidade da terapia fotodinâmica na Odontopediatria,” ARCHIVES OF HEALTH INVESTIGATION, vol. 8, no. 12, Jun. 2020, doi: https://doi.org/10.21270/archi.v8i12.4639.
  • [12] M. Ribeiro, I. B. Gomes, María José Saavedra, and M. Simões, “Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections,” Letters in Applied Microbiology, vol. 75, no. 3, pp. 548–564, Sep. 2022, doi: https://doi.org/10.1111/lam.13762.
  • [13] A. P. D. Ribeiro, A.C. Pavarina, L.N. Dovigo, I. L. Brunetti, V.S. Bagnato, C. E. Vergani, and C. A. de Souza Costa, “Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts,” Lasers in Medical Science, vol. 28, no. 2, pp. 391–398, Feb. 2012, doi: https://doi.org/10.1007/s10103-012-1064-9.
  • [14] T. D. Le, P. Phasupan, and L. T. Nguyen, “Antimicrobial photodynamic efficacy of selected natural photosensitizers against food pathogens: Impacts and interrelationship of process parameters,” Photodiagnosis and Photodynamic Therapy, vol. 32, pp. 102024, Dec. 2020, doi: https://doi.org/10.1016/j.pdpdt.2020.102024.
  • [15] K.I. Dhanalekshmi, K. Sangeetha, P. Magesan, J. Johnson, X. Zhang, and K. Jayamoorthy, “Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers,” Journal of Biomolecular Structure & Dynamics, vol. 40, no. 10, pp. 4766–4773, Dec. 2020, doi: https://doi.org/10.1080/07391102.2020.1858965.
  • [16] Q. Ren, C. Yi, J. Pan, X. Sun, and X. Huang, “Smart Fe3O4@ZnO Core-Shell Nanophotosensitizers Potential for Combined Chemo and Photodynamic Skin Cancer Therapy Controlled by UVA Radiation,” International Journal of Nanomedicine, vol. 17, pp. 3385–3400, Aug. 2022, doi: https://doi.org/10.2147/ijn.s372377.
  • [17] N. Tsolekile, S. Parani, E. F. de Macedo, T. C. Lebepe, R. Maluleke, V. Ncapayi, M. C. Matoetoe, S. P. Songca, K. Conceição, D. B. Tada, and O. S. Oluwafemi, “Photodynamic Therapy and Antibacterial Activities of a Novel Synthesized Quaternary Zn-Cu-In-S/ZnS QDs- mTHPP Porphyrin Conjugate,” International Journal of Nanomedicine, vol. 17, pp. 5315–5325, Nov. 2022, doi: https://doi.org/10.2147/ijn.s382302.
  • [18] X. Liang, Z. Zou, C. Li, X. Dong, H. Yin, and G. Yan, “Effect of antibacterial photodynamic therapy on Streptococcus mutans plaque biofilm in vitro,” Journal of Innovative Optical Health Sciences, vol. 13, no. 06, Aug. 2020, doi: https://doi.org/10.1142/s1793545820500224.
  • [19] L. Gholami, S. Shahabi, M. Jazaeri, M. Hadilou, and R. Fekrazad, “Clinical applications of antimicrobial photodynamic therapy in dentistry,” Frontiers in Microbiology, vol. 13, pp. 1020995, 2022, doi: https://doi.org/10.3389/fmicb.2022.1020995.
  • [20] G. Caccianiga, G. Rey, M. Baldoni, and A. Paiusco, “Clinical, Radiographic and Microbiological Evaluation of High Level Laser Therapy, a New Photodynamic Therapy Protocol, in Peri-Implantitis Treatment; a Pilot Experience,” BioMed Research International, vol. 2016, pp. 1–8, 2016, doi: https://doi.org/10.1155/2016/6321906.
  • [21] T. Zhao, J. Song, Y. Ping, and M. Li, “The Application of Antimicrobial Photodynamic Therapy (aPDT) in the Treatment of Peri-Implantitis,” Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1–8, May 2022, doi: https://doi.org/10.1155/2022/3547398.
  • [22] T. C. Pham, V.-N. Nguyen, Y. Choi, S. Lee, and J. Yoon, “Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy,” Chemical Reviews, vol. 121, no. 21, pp. 13454–13619, Sep. 2021, doi: https://doi.org/10.1021/acs.chemrev.1c00381.
  • [23] F. Halili et al., “Rose Bengal– and Riboflavin-Mediated Photodynamic Therapy to Inhibit Methicillin-Resistant Staphylococcus aureus Keratitis Isolates,” American journal of ophthalmology. , vol. 166, pp. 194–202, Jun. 2016, doi: https://doi.org/10.1016/j.ajo.2016.03.014.
  • [24] W. Ma, C. Liu, J. Li, M. Hao, Y. Ji, and X. Zeng, “The effects of aloe emodin-mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida albicans,” Photochemical and Photobiological Sciences, vol. 19, no. 4, pp. 485–494, Apr. 2020, doi: https://doi.org/10.1039/c9pp00352e.
  • [25] M. Krupka, A. Bożek, D. Bartusik-Aebisher, G. Cieślar, and A. Kawczyk-Krupka, “Photodynamic Therapy for the Treatment of Infected Leg Ulcers—A Pilot Study,” Antibiotics, vol. 10, no. 5, pp. 506, Apr. 2021, doi: https://doi.org/10.3390/antibiotics10050506.
  • [26] A. Monjo et al., “Photodynamic Inactivation of Herpes Simplex Viruses,” Viruses, vol. 10, no. 10, pp. 532, Sep. 2018, doi: https://doi.org/10.3390/v10100532.
  • [27] M. A. Namvar, M. Vahedi, H. Abdolsamadi, A. Mirzaei, Y. Mohammadi, and F. Azizi Jalilian, “Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study,” Photodiagnosis and Photodynamic Therapy, vol. 25, pp. 87–91, Mar. 2019, doi: https://doi.org/10.1016/j.pdpdt.2018.11.011.
  • [28] A. Almeida, M. A. F. Faustino, and M. G. P. M. S. Neves, “Antimicrobial Photodynamic Therapy in the Control of COVID-19,” Antibiotics, vol. 9, no. 6, pp. 320, Jun. 2020, doi: https://doi.org/10.3390/antibiotics9060320.
  • [29] G. Ambreen et al., “Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes,” Cancers, vol. 12, no. 11, pp. 3278, Nov. 2020, doi: https://doi.org/10.3390/cancers12113278.
  • [30] V. Ghate, E. Zelinger, H. Shoyhet, and Z. Hayouka, “Inactivation of Listeria monocytogenes on paperboard, a food packaging material, using 410 nm light emitting diodes,” Food Control, vol. 96, pp. 281–290, Feb. 2019, doi: https://doi.org/10.1016/j.foodcont.2018.09.026.
  • [31] A. A. Astafiev et al., “Unprecedented Coordination-Induced Bright Red Emission from Group 12 Metal-Bound Triarylazoimidazoles,” Molecules, vol. 26, no. 6, pp. 1739–1739, Mar. 2021, doi: https://doi.org/10.3390/molecules26061739.
  • [32] P. S. Raju, Om Prakash Chauhan, and Amarinder Singh Bawa, Postharvest Handling Systems and Storage of Vegetables. Wiley, 2018, pp. 247–264. doi: https://doi.org/10.1002/9781119098935.ch10.
  • [33] L. Sheng, Z. Zhang, G. Sun, and L. Wang, “Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis,” Food Control, vol. 114, pp. 107235, Aug. 2020, doi: https://doi.org/10.1016/j.foodcont.2020.107235.
  • [34] J. Huang et al., “Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes,” Food Control, vol. 108, pp. 106886–106886, Feb. 2020, doi: https://doi.org/10.1016/j.foodcont.2019.106886.
  • [35] Y. Shi et al., “New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers,” Journal of Agricultural and Food Chemistry, vol. 69, no. 49, pp. 14961–14974, Nov. 2021, doi: https://doi.org/10.1021/acs.jafc.1c04827.
  • [36] G. Cho and J. Ha, “ErythrosineB(RedDyeNo. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice,” Journal of Food Safety, vol. 40, no. 4, May 2020, doi: https://doi.org/10.1111/jfs.12813.
  • [37] Y. Liu et al., “Enhancement of E. coli inactivation by photosensitized erythrosine-based solar disinfection under weakly acidic conditions,” Water Research, vol. 212, pp. 118125–118125, Apr. 2022, doi: https://doi.org/10.1016/j.watres.2022.118125.
  • [38] S. T. Alam, T. A. N. Le, J.-S. Park, H. C. Kwon, and K. Kang, “Antimicrobial Biophotonic Treatment of Ampicillin-Resistant Pseudomonas aeruginosa with Hypericin and Ampicillin Cotreatment Followed by Orange Light,” Pharmaceutics, vol. 11, no. 12, Dec. 2019, doi: https://doi.org/10.3390/pharmaceutics11120641.
  • [39] J. Yu, F. Zhang, J. Zhang, Q. Han, L. Song, and X. Meng, “Effect of photodynamic treatments on quality and antioxidant properties of fresh-cut potatoes,” Food Chemistry, vol. 362, pp. 130224, Nov. 2021, doi: https://doi.org/10.1016/j.foodchem.2021.130224.
  • [40] L. Su et al., “Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging,” International Journal of Biological Macromolecules, vol. 172, pp. 231–240, Mar. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.01.056.
  • [41] T. D. Le, P. Phasupan, K. Visaruthaphong, P. Chouwatat, V. Thi Thu, and L. T. Nguyen, “Development of an antimicrobial photodynamic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) packaging film for food preservation,” Food Packaging and Shelf Life, vol. 30, pp. 100749, Dec. 2021, doi: https://doi.org/10.1016/j.fpsl.2021.100749.
  • [42] D.-K. Kim, H.-S. Kim, and D.-H. Kang, “Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. Typhimurium in apple juice,” Innovative Food Science and Emerging Technologies, vol. 78, pp. 103014–103014, Jun. 2022, doi: https://doi.org/10.1016/j.ifset.2022.103014.
  • [43] Y. Gao et al., “Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters,” Photodiagnosis and Photodynamic Therapy, vol. 26, pp. 244–251, Jun. 2019, doi: https://doi.org/10.1016/j.pdpdt.2019.04.002.
  • [44] M.-J. Kim, W. S. Bang, and H.-G. Yuk, “405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration,” Food Microbiology, vol. 62, pp. 124–132, Apr. 2017, doi: https://doi.org/10.1016/j.fm.2016.10.002.
  • [45] K. Aponiene, E. Paskeviciute, I. Reklaitis, and Z. Luksiene, “Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments,” Journal of Food Engineering, vol. 144, pp. 29–35, Jan. 2015, doi: https://doi.org/10.1016/j.jfoodeng.2014.07.012.
  • [46] H. Li et al., “Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality,” LWT, vol. 146, pp. 111462, Jul. 2021, doi: https://doi.org/10.1016/j.lwt.2021.111462.
  • [47] T. Q. Corrêa et al., “Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit,” Photodiagnosis and Photodynamic Therapy, vol. 30, pp. 101678, Jun. 2020, doi: https://doi.org/10.1016/j.pdpdt.2020.101678.
  • [48] L. S. Herculano et al., “Antimicrobial curcumin-mediated photodynamic inactivation of bacteria in natural bovine casing,” Photodiagnosis and Photodynamic Therapy, vol. 40, pp. 103173–103173, Dec. 2022, doi: https://doi.org/10.1016/j.pdpdt.2022.103173.
  • [49] Y. Yuan et al., “Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices,” Molecules, vol. 27, no. 20, pp. 7136–7136, Oct. 2022, doi: https://doi.org/10.3390/molecules27207136.
  • [50] W.-M. Gu, D. Liú, and J. Sun, “Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams,” International Journal of Food Microbiology, vol. 378, pp. 109816–109816, Oct. 2022, doi: https://doi.org/10.1016/j.ijfoodmicro.2022.109816.
  • [51] J. Wu, H. Mou, C. Xue, A. W. Leung, C. Xu, and Q.-J. Tang, “Photodynamic effect of curcumin on Vibrio parahaemolyticus,” Photodiagnosis and Photodynamic Therapy, vol. 15, pp. 34–39, Sep. 2016, doi: https://doi.org/10.1016/j.pdpdt.2016.05.004.
  • [52] S. Rafeeq, S. Shiroodi, M. H. Schwarz, N. Nitin, and R. Ovissipour, “Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-Mediated Photosensitization and Nanobubble-Ultrasonication Approaches,” Foods, vol. 9, no. 9, pp. 1306, Sep. 2020, doi: https://doi.org/10.3390/foods9091306.
  • [53] Y. Lin et al., “Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon,” Molecules, vol. 24, no. 13, pp. 2374, Jan. 2019, doi: https://doi.org/10.3390/molecules24132374.
  • [54] J. Gao, W. Srichamnong, W. Chathiran, and K. R. Matthews, “Influences of photosensitizer curcumin on microbial survival and physicochemical properties of chicken during storage,” Poultry Science, vol. 102, no. 2, pp. 102417, Feb. 2023, doi: https://doi.org/10.1016/j.psj.2022.102417.
  • [55] B. A. Temba, M. T. Fletcher, G. P. Fox, J. Harvey, S. A. Okoth, and Y. Sultanbawa, “Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels,” Food Microbiology, vol. 82, pp. 82–88, Sep. 2019, doi: https://doi.org/10.1016/j.fm.2018.12.013.
  • [56] N. Mukubesa, R. Nguenha, H. T. Hong, M. Seididamyeh, M. E. Netzel, and Y. Sultanbawa, “Curcumin-Based Photosensitization, a Green Treatment in Inactivating Aspergillus flavus Spores in Peanuts,” Foods, vol. 11, no. 3, pp. 354, Jan. 2022, doi: https://doi.org/10.3390/foods11030354.
  • [57] Z. Wang, Y. Jia, W. Li, and M. Zhang, “Antimicrobial photodynamic inactivation with curcumin against Staphylococcus saprophyticus, in vitro and on fresh dough sheet,” LWT, vol. 147, pp. 111567, Jul. 2021, doi: https://doi.org/10.1016/j.lwt.2021.111567.
  • [58] J. Hu et al., “Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA,” Food Research International, vol. 111, pp. 265–271, Sep. 2018, doi: https://doi.org/10.1016/j.foodres.2018.05.042.
  • [59] A. Srimagal, T. Ramesh, and J. K. Sahu, “Effect of light emitting diode treatment on inactivation of Escherichia coli in milk,” LWT-Food Science and Technology, vol. 71, pp. 378–385, Sep. 2016, doi: https://doi.org/10.1016/j.lwt.2016.04.028.
  • [60] Y. Zou et al., “Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple,” LWT, vol. 141, pp. 110902, Apr. 2021, doi: https://doi.org/10.1016/j.lwt.2021.110902.
  • [61] R. Tao, F. Zhang, Q. Tang, C. Xu, Z.-J. Ni, and X. Meng, “Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples,” Food Chemistry, vol. 274, pp. 415–421, Feb. 2019, doi: https://doi.org/10.1016/j.foodchem.2018.08.042.
  • [62] Y. Zhang, Z. Ding, C. Shao, and J. Xie, “Chlorophyllin-Based 405 nm Light Photodynamic Improved Fresh-Cut Pakchoi Quality at Postharvest and Inhibited the Formation of Biofilm,” Foods, vol. 11, no. 16, pp. 2541–2541, Aug. 2022, doi: https://doi.org/10.3390/foods11162541.
  • [63] Leonardo do Prado-Silva et al., “Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation,” International Journal of Food Microbiology, vol. 333, pp. 108803–108803, Nov. 2020, doi: https://doi.org/10.1016/j.ijfoodmicro.2020.108803.
  • [64] E. Bonin et al., “Photodynamic inactivation of foodborne bacteria by eosin Y,” Journal of Applied Microbiology, vol. 124, no. 6, pp. 1617–1628, Mar. 2018, doi: https://doi.org/10.1111/jam.13727.
  • [65] In-Hwan Lee, S.-H. Kim, and D.-H. Kang, “Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes,” Current research in food science, vol. 6, pp. 100428–100428, Jan. 2023, doi: https://doi.org/10.1016/j.crfs.2022.100428.
There are 65 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Gökçe Gürün 0000-0003-4737-597X

Funda Karbancıoğlu Güler 0000-0001-6576-0084

Publication Date July 31, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Gürün, G., & Karbancıoğlu Güler, F. (2024). Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens. Duzce University Journal of Science and Technology, 12(3), 1461-1478. https://doi.org/10.29130/dubited.1365178
AMA Gürün G, Karbancıoğlu Güler F. Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens. DUBİTED. July 2024;12(3):1461-1478. doi:10.29130/dubited.1365178
Chicago Gürün, Gökçe, and Funda Karbancıoğlu Güler. “Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1461-78. https://doi.org/10.29130/dubited.1365178.
EndNote Gürün G, Karbancıoğlu Güler F (July 1, 2024) Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens. Duzce University Journal of Science and Technology 12 3 1461–1478.
IEEE G. Gürün and F. Karbancıoğlu Güler, “Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens”, DUBİTED, vol. 12, no. 3, pp. 1461–1478, 2024, doi: 10.29130/dubited.1365178.
ISNAD Gürün, Gökçe - Karbancıoğlu Güler, Funda. “Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1461-1478. https://doi.org/10.29130/dubited.1365178.
JAMA Gürün G, Karbancıoğlu Güler F. Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens. DUBİTED. 2024;12:1461–1478.
MLA Gürün, Gökçe and Funda Karbancıoğlu Güler. “Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1461-78, doi:10.29130/dubited.1365178.
Vancouver Gürün G, Karbancıoğlu Güler F. Antimicrobial Photodynamic Therapy: Novel Concept for Foodborne Pathogens. DUBİTED. 2024;12(3):1461-78.