Research Article
BibTex RIS Cite

Yeni Tiyazol Bazlı Tiyosemikarbazon Komplekslerinin Sentezi ve in vitro Biyolojik Değerlendirmeleri

Year 2024, Volume: 12 Issue: 3, 1389 - 1397, 31.07.2024
https://doi.org/10.29130/dubited.1402771

Abstract

Sunulan bu çalışmada, yeni heterosiklik tiyazol bazlı tiyosemikarbazon Ag(I) kompleksleri (Hc1, Hc2, Hc3) template yöntem ile elde edildi. Sentezlenen tiyosemikarbazon bileşiklerinin yapıları bazı spektroskopik teknikler (element analizi, infrared spektra (IR), termogravimetrik analiz (TGA), organic elemental analiz, ve magnetik duyarlılık ölçümleri) ile karakterize edildi. Yeni heterosiklik tiyazol bazlı tiyosemikarbazon Ag(I) komplekslerinin biyolojik aktiviteleri potansiyel antimikrobiyal ajanlar olarak seçilmiş hastalık yapıcı patojenlere (Micrococcus luteus ATCC9341, Staphylococcus epidermidis ATCC12228, Bacillus cereus RSKK863, Pseudomonas aeroginosa ATCC27853, Klebsiella pneumonia ATCC27853, Enterobacter aerogenes ATCC51342, Salmonella typhi H NCTC9018394, Shigella dysenteria NCTC2966, Proteusv vulgaris RSKK96026, Candida albicans Y-1200-NIH) karşı in vitro olarak incelendi.

Ethical Statement

Gerekli değil

Supporting Institution

Düzce University Scientific Project (Project no: 2021.05.03.1215)Üniversitesi

Thanks

Bu çalışma Düzce Üniversitesi Blilmsel Araştırma Projesi tarafondan desteklenmiştir (Project no: 2021.05.03.1215).

References

  • [1] B. Pan, C. V. S. Reddy, Y. Wu, L. Qiu, “Recent advances in cyclization reactions via catalytic allylic substitution for the asymmetric synthesis of heterocyclic compounds,” Tetrahedron Letters, vol. 141, pp. 155071, 2020.
  • [2] A. Khan, K. Paul, I. Singh, J.P. Jasinski, V.A. Smolenski, E.P. Hotchkiss, P.T. Kelley, Z.A. Shalit, M. Kaur, S. Banerjee, P. Roy, R. Sharma, “Copper(I) and silver(I) complexes of anthraldehyde thiosemicarbazone: synthesis, structure elucidation, in vitro anti-tuberculosis/cytotoxic activity and interactions with DNA/HSA,” Dalton Transactions, vol. 15, no. 49(47), pp. 17350–17367, 2020.
  • [3] R. K. Mahajan, T.P.S. Walia, T.S. Lobana, Sumanjit, “Cyclopentanone thiosemicarbazone, a new complexing agent for copper determination in biological samples by adsorptive stripping voltammetry,” Analytical Sciences, vol. 22, pp. 389–392, 2006.
  • [4] A. Castiñeiras, N. Fernández-Hermida, I. García-Santos, L. Gómez-Rodríguez, “Neutral NiII, PdII and PtII ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties,” Dalton Transactions, vol. 41, pp. 13486–13495, 2012.
  • [5] A. I. Matesanz, P. Souza, “Unprecedented Pt(II) complex of an asymmetric 2,6-diacetylpyridine bis(4N-substituted thiosemicarbazone) ligand,” Inorganic Chemistry Communications, vol. 27, pp. 5–8, 2013.
  • [6] M. Bingül, “Synthesis and characterisation of novel 4,6-dimethoxyindole-7- and -2-thiosemicarbazone derivatives: Biological evaluation as antioxidant and anticholinesterase candidates,” Journal of Chemical Research, vol. 43, no. 9-10, pp. 399–406, 2019.
  • [7] D. R. Richardson, “Iron chelators as therapeutic agents for the treatment of cancer,” Critical Reviews in Oncology/Hematology, vol. 42, no. 3, pp. 267–281, 2002.
  • [8] B. Kaya, A. Koca, B. Ülküseven, “Asymmetric N2O2 complexes of iron(III) and nickel(II) obtained from acetylacetone-S-methyl-thiosemicarbazone: synthesis, characterization and electrochemistry,” Journal of Coordination Chemistry, vol. 68, no. 4, pp. 586–598, 2015.
  • [9] M. Karatepe, F. Karatas, “Antioxidant, prooxidant effect of the thiosemicarbazone derivative Schiff base (4-(1- phenylmethylcyclobutane-3-yl)-2-(2- hydroxybenzylidene- hydrazino) thiazole) and its metal complexes on rats,” Cell Biochemistry and Function, vol. 24, no. 6, pp. 547–554, 2006.
  • [10] S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta, N. Rath, “Antitumor metallothiosemicarbazonates: structure and antitumor activity of palladium complex of phenanthrenequinone thiosemicarbazone,” Inorganic Chemistry, vol. 44, no. 5, pp. 1154–1156, 2005.
  • [11] N. A. H. Syahrina, J. N. Fariza, M. R. M. Abd Razak, N. R. F. Mohd Sofyan, S. N. Abdul Halim, N. F. Rajab, R. Sarip, “Synthesis, characterization, and evaluation of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine as biological agents,” Journal of Coordination Chemistry, vol. 72, no. 5-7, pp. 879–893, 2019.
  • [12] N. Özdemir, M. Sahin, T. Bal-Demirci, B. Ülküseven, “The asymmetric ONNO complexes of dioxouranium(VI) with N1,N4-diarylidene-S-propyl-thiosemicarbazones derived from 3,5-dichlorosalicylaldehyde: Synthesis, spectroscopic and structural studies,” Polyhedron, vol. 30, no. 3, pp. 515–521, 2011.
  • [13] D. U. Kirtani, N. S. Ghatpande, K. R. Suryavanshi, P. P. Kulkarni, A. A. Kumbhar, “Fluorescent copper(II) complexes of asymmetric bis(thiosemicarbazone)s: Electrochemistry, cellular uptake and antiproliferative activity,” ChemistrySelect, vol. 6, pp. 6063–6070, 2021.
  • [14] D. Polo-Cero´n, “Cu(II) and Ni(II) complexes with new tridentate nns thiosemicarbazones: synthesis, characterisation, dna ınteraction, and antibacterial activity,” Bioinorganic Chemistry and Applications, vol. 2019, pp. 1-14, 2019.
  • [15] D. S. Kalinowski, P.C.S. Yu, M. Islam, L. Yi-Tyng, D.B. Lovejoy, N. Kumar, P.V. Bernhardt, D.R. Richardson, “Design, synthesis, and characterization of novel iron chelators: structure-activity relationships of the 2-benzoylpyridine thio-semicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents,” Journal of Medicinal Chemistry, vol. 50, no. 15, pp. 3716–3729, 2007.
  • [16] E. Ülke, E. Hasanoğlu Özkan, D. Nartop, H. Ogutcu, “New antimicrobial polymeric microspheres containing azomethine,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 32, pp. 3971–3982, 2022.
  • [17] L. N. Obasi, P. O. Ukoha, K. F. Chah, A. O. Anaga, “Synthesis, spectroscopic characterization and antibacterial screening of novel n-(benzothiazol-2-yl)ethanamides,” Eclética Química, vol. 36, no. 1, pp. 1–3, 2011.
  • [18] B. Sundaram, M. Dharmasivam, S.K. Raju, G.K. Young, G. Mani, K. Kyobum, K.R. Aziz, “Biocompatibility, in vitro antiproliferative, and in silico EGFR/VEGFR2 studies of heteroleptic metal(II) complexes of thiosemicarbazones and Naproxen,” Chemical Research in Toxicology, vol. 32, no. 8, pp. 1554–1571, 2019.
  • [19] K. Vinod, S. Vikram, N.G. Ajit, K.M. Krishna, B.P. Lal, G.B.D. Michael, S. Nanhai, “Influence of ligand environment on the structure and properties of silver(I) dithiocarbamate cluster-based coordination polymers and dimers,” New Journal of Chemistry, vol. 38, no. 9, pp. 4478–4485, 2014.
  • [20] R. Suman, K.M. Tapan, M. Partha, L.T. Elena, S. Chittaranjan, “Synthesis, structure, spectroscopic properties, electrochemistry, and DFT correlative studies of N-[(2-pyridyl)methyliden]-6-coumarin complexes of Cu(I) and Ag(I),” Polyhedron, vol. 30, no. 6, pp. 913–922, 2011.
  • [21] M. M. Jan, W. K. Mohd, D. Kiran, “A novel tetrahedral silver complex of (z)-o-methyl s-hydrogen tosylcarbonimidothioate: DFT supported crystallographic and spectroscopic study,” Journal of the Indian Chemical Society, vol. 99, no.8, pp. 100626, 2022.
  • [22] D. Nartop, E. Tokmak, E. Hasanoğlu Özkan, H.E. Kızıl, H. Öğütçü, G.Ağar, S. Allı, “Synthesis of novel polymers containing Schiff base as potential antimutagenic and antimicrobial agents,” Journal of Medicinal and Chemical Sciences, vol.3, no.4, pp. 363–372, 2020.
  • [23] D. Nartop, E. Hasanoğlu Özkan, M. Gündem, S. Çeker, G. Ağar, H. Ögutçu, N. Sarı, “Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol,” Journal of Molecular Structure, vol. 1195, pp. 877–882, 2019.
  • [24] D. Nartop, B. Demirel, M. Güleç, E. Hasanoğlu Özkan, N. Kurnaz Yetim, N. Sarı, S. Çeker, H. Öğütçü, G. Ağar, “Novel polymeric microspheres: Synthesis, enzyme immobilization, antimutagenic activity, and antimicrobial evaluation against pathogenic microorganisms,” Journal of Biochemical and Molecular Toxicology, vol.34, no.2, pp. e22432, 2019.
  • [25] P. Georg, S.P. Françoise, J. Bernd, “Staphylococcus epidermidis-a Versatile Pathogen,” in Pathogenesis of wound and biomaterial-associated infections,1st ed., London, Springer-Verlang,1990, no. 46, pp. 309–311.
  • [26] M. Zhu, Q. Zhu, Z. Yang, Z. Lıang, “Clinical characteristics of patients with micrococcus luteus bloodstream infection in a Chinese tertiary-care hospital,” Polish Journal of Microbiology, vol. 70, no. 3, pp. 321–326, 2021.
  • [27] H. Carolus, K.V. Dyck, P.V. Dijck, “Candida albicans and Staphylococcus species: A threatening twosome,” Frontiers in Microbiology, vol. 10, no. 2162, pp.1–8, 2019.

Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes

Year 2024, Volume: 12 Issue: 3, 1389 - 1397, 31.07.2024
https://doi.org/10.29130/dubited.1402771

Abstract

In the present work, novel heterocyclic thiazole-based thiosemicarbazone Ag(I) complexes (Hc1, Hc2, Hc3) were obtained using the template method. The structures of synthesized thiosemicarbazone compounds were determined by some spectroscopic techniques (element analysis, infrared spectra (IR), thermogravimetric analysis (TGA), organic elemental analysis, and magnetic susceptibility measurements). The biological activities of novel heterocyclic thiazole-based thiosemicarbazone Ag(I) complexes werev screenedv in vitro against selected disease-causing pathogens (Micrococcus luteus ATCC9341, Staphylococcus epidermidis ATCC12228, Bacillus cereus RSKK863, Pseudomonas aeroginosa ATCC27853, Klebsiella pneumonia ATCC27853, Enterobacter aerogenes ATCC51342, Salmonellav typhi H NCTC9018394, Shigella dysenteria NCTC2966, Proteus vulgaris RSKK96026, Candidav albicans Y-1200-NIH) were as potential antimicrobial agents. It was determined that the thiazole-based thiosemicarbazone Ag(I) complexes exhibited high or moderate antibacterial and antifungal activity.

Ethical Statement

Not necessary

Supporting Institution

Düzce University Scientific Project (Project no: 2021.05.03.1215).

Thanks

This work is supported by Düzce University Scientific Project (Project no: 2021.05.03.1215).

References

  • [1] B. Pan, C. V. S. Reddy, Y. Wu, L. Qiu, “Recent advances in cyclization reactions via catalytic allylic substitution for the asymmetric synthesis of heterocyclic compounds,” Tetrahedron Letters, vol. 141, pp. 155071, 2020.
  • [2] A. Khan, K. Paul, I. Singh, J.P. Jasinski, V.A. Smolenski, E.P. Hotchkiss, P.T. Kelley, Z.A. Shalit, M. Kaur, S. Banerjee, P. Roy, R. Sharma, “Copper(I) and silver(I) complexes of anthraldehyde thiosemicarbazone: synthesis, structure elucidation, in vitro anti-tuberculosis/cytotoxic activity and interactions with DNA/HSA,” Dalton Transactions, vol. 15, no. 49(47), pp. 17350–17367, 2020.
  • [3] R. K. Mahajan, T.P.S. Walia, T.S. Lobana, Sumanjit, “Cyclopentanone thiosemicarbazone, a new complexing agent for copper determination in biological samples by adsorptive stripping voltammetry,” Analytical Sciences, vol. 22, pp. 389–392, 2006.
  • [4] A. Castiñeiras, N. Fernández-Hermida, I. García-Santos, L. Gómez-Rodríguez, “Neutral NiII, PdII and PtII ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties,” Dalton Transactions, vol. 41, pp. 13486–13495, 2012.
  • [5] A. I. Matesanz, P. Souza, “Unprecedented Pt(II) complex of an asymmetric 2,6-diacetylpyridine bis(4N-substituted thiosemicarbazone) ligand,” Inorganic Chemistry Communications, vol. 27, pp. 5–8, 2013.
  • [6] M. Bingül, “Synthesis and characterisation of novel 4,6-dimethoxyindole-7- and -2-thiosemicarbazone derivatives: Biological evaluation as antioxidant and anticholinesterase candidates,” Journal of Chemical Research, vol. 43, no. 9-10, pp. 399–406, 2019.
  • [7] D. R. Richardson, “Iron chelators as therapeutic agents for the treatment of cancer,” Critical Reviews in Oncology/Hematology, vol. 42, no. 3, pp. 267–281, 2002.
  • [8] B. Kaya, A. Koca, B. Ülküseven, “Asymmetric N2O2 complexes of iron(III) and nickel(II) obtained from acetylacetone-S-methyl-thiosemicarbazone: synthesis, characterization and electrochemistry,” Journal of Coordination Chemistry, vol. 68, no. 4, pp. 586–598, 2015.
  • [9] M. Karatepe, F. Karatas, “Antioxidant, prooxidant effect of the thiosemicarbazone derivative Schiff base (4-(1- phenylmethylcyclobutane-3-yl)-2-(2- hydroxybenzylidene- hydrazino) thiazole) and its metal complexes on rats,” Cell Biochemistry and Function, vol. 24, no. 6, pp. 547–554, 2006.
  • [10] S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta, N. Rath, “Antitumor metallothiosemicarbazonates: structure and antitumor activity of palladium complex of phenanthrenequinone thiosemicarbazone,” Inorganic Chemistry, vol. 44, no. 5, pp. 1154–1156, 2005.
  • [11] N. A. H. Syahrina, J. N. Fariza, M. R. M. Abd Razak, N. R. F. Mohd Sofyan, S. N. Abdul Halim, N. F. Rajab, R. Sarip, “Synthesis, characterization, and evaluation of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine as biological agents,” Journal of Coordination Chemistry, vol. 72, no. 5-7, pp. 879–893, 2019.
  • [12] N. Özdemir, M. Sahin, T. Bal-Demirci, B. Ülküseven, “The asymmetric ONNO complexes of dioxouranium(VI) with N1,N4-diarylidene-S-propyl-thiosemicarbazones derived from 3,5-dichlorosalicylaldehyde: Synthesis, spectroscopic and structural studies,” Polyhedron, vol. 30, no. 3, pp. 515–521, 2011.
  • [13] D. U. Kirtani, N. S. Ghatpande, K. R. Suryavanshi, P. P. Kulkarni, A. A. Kumbhar, “Fluorescent copper(II) complexes of asymmetric bis(thiosemicarbazone)s: Electrochemistry, cellular uptake and antiproliferative activity,” ChemistrySelect, vol. 6, pp. 6063–6070, 2021.
  • [14] D. Polo-Cero´n, “Cu(II) and Ni(II) complexes with new tridentate nns thiosemicarbazones: synthesis, characterisation, dna ınteraction, and antibacterial activity,” Bioinorganic Chemistry and Applications, vol. 2019, pp. 1-14, 2019.
  • [15] D. S. Kalinowski, P.C.S. Yu, M. Islam, L. Yi-Tyng, D.B. Lovejoy, N. Kumar, P.V. Bernhardt, D.R. Richardson, “Design, synthesis, and characterization of novel iron chelators: structure-activity relationships of the 2-benzoylpyridine thio-semicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents,” Journal of Medicinal Chemistry, vol. 50, no. 15, pp. 3716–3729, 2007.
  • [16] E. Ülke, E. Hasanoğlu Özkan, D. Nartop, H. Ogutcu, “New antimicrobial polymeric microspheres containing azomethine,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 32, pp. 3971–3982, 2022.
  • [17] L. N. Obasi, P. O. Ukoha, K. F. Chah, A. O. Anaga, “Synthesis, spectroscopic characterization and antibacterial screening of novel n-(benzothiazol-2-yl)ethanamides,” Eclética Química, vol. 36, no. 1, pp. 1–3, 2011.
  • [18] B. Sundaram, M. Dharmasivam, S.K. Raju, G.K. Young, G. Mani, K. Kyobum, K.R. Aziz, “Biocompatibility, in vitro antiproliferative, and in silico EGFR/VEGFR2 studies of heteroleptic metal(II) complexes of thiosemicarbazones and Naproxen,” Chemical Research in Toxicology, vol. 32, no. 8, pp. 1554–1571, 2019.
  • [19] K. Vinod, S. Vikram, N.G. Ajit, K.M. Krishna, B.P. Lal, G.B.D. Michael, S. Nanhai, “Influence of ligand environment on the structure and properties of silver(I) dithiocarbamate cluster-based coordination polymers and dimers,” New Journal of Chemistry, vol. 38, no. 9, pp. 4478–4485, 2014.
  • [20] R. Suman, K.M. Tapan, M. Partha, L.T. Elena, S. Chittaranjan, “Synthesis, structure, spectroscopic properties, electrochemistry, and DFT correlative studies of N-[(2-pyridyl)methyliden]-6-coumarin complexes of Cu(I) and Ag(I),” Polyhedron, vol. 30, no. 6, pp. 913–922, 2011.
  • [21] M. M. Jan, W. K. Mohd, D. Kiran, “A novel tetrahedral silver complex of (z)-o-methyl s-hydrogen tosylcarbonimidothioate: DFT supported crystallographic and spectroscopic study,” Journal of the Indian Chemical Society, vol. 99, no.8, pp. 100626, 2022.
  • [22] D. Nartop, E. Tokmak, E. Hasanoğlu Özkan, H.E. Kızıl, H. Öğütçü, G.Ağar, S. Allı, “Synthesis of novel polymers containing Schiff base as potential antimutagenic and antimicrobial agents,” Journal of Medicinal and Chemical Sciences, vol.3, no.4, pp. 363–372, 2020.
  • [23] D. Nartop, E. Hasanoğlu Özkan, M. Gündem, S. Çeker, G. Ağar, H. Ögutçu, N. Sarı, “Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol,” Journal of Molecular Structure, vol. 1195, pp. 877–882, 2019.
  • [24] D. Nartop, B. Demirel, M. Güleç, E. Hasanoğlu Özkan, N. Kurnaz Yetim, N. Sarı, S. Çeker, H. Öğütçü, G. Ağar, “Novel polymeric microspheres: Synthesis, enzyme immobilization, antimutagenic activity, and antimicrobial evaluation against pathogenic microorganisms,” Journal of Biochemical and Molecular Toxicology, vol.34, no.2, pp. e22432, 2019.
  • [25] P. Georg, S.P. Françoise, J. Bernd, “Staphylococcus epidermidis-a Versatile Pathogen,” in Pathogenesis of wound and biomaterial-associated infections,1st ed., London, Springer-Verlang,1990, no. 46, pp. 309–311.
  • [26] M. Zhu, Q. Zhu, Z. Yang, Z. Lıang, “Clinical characteristics of patients with micrococcus luteus bloodstream infection in a Chinese tertiary-care hospital,” Polish Journal of Microbiology, vol. 70, no. 3, pp. 321–326, 2021.
  • [27] H. Carolus, K.V. Dyck, P.V. Dijck, “Candida albicans and Staphylococcus species: A threatening twosome,” Frontiers in Microbiology, vol. 10, no. 2162, pp.1–8, 2019.
There are 27 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Dilek Nartop 0000-0002-0705-5018

Elvan Hasanoğlu Özkan 0000-0001-7338-4015

Hatice Öğütçü 0000-0001-7100-9318

Nurdan Kurnaz Yetim 0000-0001-6227-0346

Publication Date July 31, 2024
Submission Date December 10, 2023
Acceptance Date February 16, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Nartop, D., Hasanoğlu Özkan, E., Öğütçü, H., Kurnaz Yetim, N. (2024). Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes. Duzce University Journal of Science and Technology, 12(3), 1389-1397. https://doi.org/10.29130/dubited.1402771
AMA Nartop D, Hasanoğlu Özkan E, Öğütçü H, Kurnaz Yetim N. Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes. DUBİTED. July 2024;12(3):1389-1397. doi:10.29130/dubited.1402771
Chicago Nartop, Dilek, Elvan Hasanoğlu Özkan, Hatice Öğütçü, and Nurdan Kurnaz Yetim. “Synthesis and in Vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes”. Duzce University Journal of Science and Technology 12, no. 3 (July 2024): 1389-97. https://doi.org/10.29130/dubited.1402771.
EndNote Nartop D, Hasanoğlu Özkan E, Öğütçü H, Kurnaz Yetim N (July 1, 2024) Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes. Duzce University Journal of Science and Technology 12 3 1389–1397.
IEEE D. Nartop, E. Hasanoğlu Özkan, H. Öğütçü, and N. Kurnaz Yetim, “Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes”, DUBİTED, vol. 12, no. 3, pp. 1389–1397, 2024, doi: 10.29130/dubited.1402771.
ISNAD Nartop, Dilek et al. “Synthesis and in Vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes”. Duzce University Journal of Science and Technology 12/3 (July 2024), 1389-1397. https://doi.org/10.29130/dubited.1402771.
JAMA Nartop D, Hasanoğlu Özkan E, Öğütçü H, Kurnaz Yetim N. Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes. DUBİTED. 2024;12:1389–1397.
MLA Nartop, Dilek et al. “Synthesis and in Vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes”. Duzce University Journal of Science and Technology, vol. 12, no. 3, 2024, pp. 1389-97, doi:10.29130/dubited.1402771.
Vancouver Nartop D, Hasanoğlu Özkan E, Öğütçü H, Kurnaz Yetim N. Synthesis and in vitro Biological Assessments of Novel Thiazole-Based Thiosemicarbazone Complexes. DUBİTED. 2024;12(3):1389-97.