Nikel Alaşımlı Esnek Nüveye Sahip Rogowski Bobinler ve Performans Karşılaştırmaları
Year 2025,
Volume: 13 Issue: 4, 1601 - 1611, 30.10.2025
Gizem Merve Aydin
Emin Yıldırız
Abstract
Elektriksel devrelerin farklı çalışma koşullarında takibi için anlık akımların hassas ve doğru şekilde ölçülmesi gerekir. Geleneksel Rogowski Bobinleri (RB) hava nüveli olduklarından, akım transformatörleri gibi doyum problemleri yaşamazlar. Esnek oldukları için ölçü aletinin giremediği dar alanlarda dahi kolayca bağlanabilirler ve ölçüm yapabilirler. Bu üstünlüklerine karşın nominal akım değerlerinde dahi birkaç mV seviyesinde üretilen sekonder gerilimleri kullanılarak akım ölçümü gerçekleştirirler. Bu nedenle özellikle düşük akım değerlerinde RB ile ölçüm yapmak zordur ve sonuçlar ölçüm hatalarına açıktır. Düşük genlikte ve frekansta akım ölçümlerinde, uygun RB tasarımı ve indikatör seçimi kritiktir. RB tasarımında; iç kesit alanının büyüklüğü ve şekli ile iç ve dış çap gibi fiziksel boyutlar dikkate alınır. Ancak kullanım yerleri fiziksel boyutları da kısıtlayabilir. Fiziksel boyutlarını değiştirmeden RB’in ölçüm etkinliğini arttırmak için, hava-nüveli yapıdan manyetik nüveli yapıya geçiş yapılmalıdır. Bu çalışmada farklı oranlarda Nikel alaşımlar kullanılarak manyetik filamentler üretilmiştir. Manyetik filamentlerin sarılması ile esnek manyetik nüveli RB’ler geliştirilmiştir. Nüvenin esnekliği de dikkate alınarak, iki farklı alaşımlı manyetik filament üretilmiştir. Geliştirilen manyetik filamentlerin bağıl geçirgenlikleri, deneysel çalışmalarla belirlenmiş ve sonlu elemanlar analizi ile 5-400 A aralığında lineer karakteristikleri doğrulanmıştır.
Project Number
2022.06.03-1349
References
-
Accuenergy. (2025, February 25). AcuCT Flex Series Rogowski Coil CT datasheet. https://accucdn.accuenergy.com/wp-content/uploads/acuct-flex-series-rogowski-coil-ct-datasheet.pdf
-
Al-Sowayan, S. (2014). Improved mutual inductance of Rogowski coil using hexagonal core. World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 8(2), 293-296.
-
Anigi, E., Karacasu, Ö., & Hocaoğlu, M. H. (2012, November 29 – December 1). Ölçü akım transformatörlerinin doğruluğunun sinüzoidal olmayan şartlar altında deneysel incelenmesi, In Proceedings of ELECO 2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu (pp. 148-152). Bursa Türkiye.
-
Bawankule, P., & Chandrasekaran, K. (2022, October 7-9). Rogowski coil with an active integrator for impulse current measurement. In Proceedings of the 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT) (pp. 1–6). Bangalore, India.
-
Bawankule, P., & Chandrasekaran, K. (2025, January 20-22). Analyzing the Performance of 3D PCB Rogowski Coil in Pulsed Current Measurement Using Finite Element Method. In Proceedings of the 2025 Fourth International Conference on Power, Control and Computing Technologies (ICPC2T) (pp. 1–6). Raipur, India, https://doi.org/10.1109/ICPC2T63847.2025.10958704
-
Chen, K. L., & Chen, N. (2010). A new method for power current measurement using a coreless Hall effect current transformer. IEEE Transactions on Instrumentation and Measurement, 60(1), 158-169. https://doi.org/10.1109/TIM.2010.2049234
-
Crescentini, M., Syeda, S. F., & Gibiino, G. P. (2021). Hall-effect current sensors: Principles of operation and implementation techniques. IEEE Sensors Journal, 22(11), 10137-10151. https://doi.org/10.1109/JSEN.2021.3119766
Çınar, H., İmal, N., & Şener, E. (2016). Akım ölçü transformatörleri çalışma bölgesi analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 782-790.
-
Dubickas, V., & Edin, H. (2007). High-frequency model of the Rogowski coil with a small number of turns. IEEE Transactions on Instrumentation and Measurement, 56(6), 2284-2288. https://doi.org/10.1109/TIM.2007.907965
-
Han, R. Y., Wu, J. W., Ding, W. D., Jing, Y., Zhou, H. B., Liu, Q. J., & Qiu, A. C. (2015). Hybrid PCB Rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Transactions on Plasma Science, 43(10), 3555-3561. https://doi.org/10.1109/TPS.2015.2415517
-
Hlavacek, J., Prochazka, R., Draxler, K., & Kvasnicka, V. (2008, September 22-24). The Rogowski coil design software. In Proceedings of the16th IMEKO TC4 International Symposium. Florence, Italy.
-
Kang, J., Zhu, A., Chen, Y., Luo, H., Yao, L., & Xin, Z. (2023). An online gate oxide degradation monitoring method for SiC MOSFETs with contactless PCB Rogowski coil approach. IEEE Transactions on Power Electronics, 38(8), 9673-9684. https://doi.org/10.1109/TPEL.2023.3270820
-
Liu, Y., Lin, F., Zhang, Q., & Zhong, H. (2010). Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sensors Journal, 11(1), 123-130. https://doi.org/10.1109/JSEN.2010.2052034
-
Marracci, M., Tellini, B., & Bertolucci, E. (2017, May). Study and characterization of a Rogowski coil with superparamagnetic magnetite core. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, https://doi.org/10.1109/I2MTC.2017.7969951
-
Nanyan, A. N., Isa, M., Hamid, H. A., Rohani, M. N. K., & Ismail, B. (2018). The Rogowski coil sensor in high current application: A review. IOP Conference Series: Materials Science and Engineering, 318(1), Article 012054. https://doi.org/10.1088/1757-899X/318/1/012054
-
Pozo, B., Garate, J. I., Araujo, J. Á., & Ferreiro, S. (2019). Energy harvesting technologies and equivalent electronic structural models. Electronics, 8(5), Article 486. https://doi.org/10.3390/electronics8050486
-
Prince, T. J., Riley, E. J., & Miller, S. W. (2021). Additive manufacturing of PLA-based microwave circuit-analog absorbers. IEEE Transactions on Electromagnetic Compatibility, 63(5), 1341-1346. https://doi.org/10.1109/TEMC.2020.3044014
-
Ranasingh, S., Pradhan, T., & Raju, D. K. (2022). Contactless current sensor with novel coil designs and Hall-effect based electron device for dynamic precision adjustment. IEEE Sensors Journal, 22(21), 20626-20634. https://doi.org/10.1109/JSEN.2022.3207276
-
Samimi, M. H., Mahari, A., Farahnakian, M. A., & Mohseni, H. (2014). The Rogowski coil principles and applications: A review. IEEE Sensors Journal, 15(2), 651-658. https://doi.org/10.1109/JSEN.2014.2362940
-
Shafiq, M., Stewart, B. G., Hussain, G. A., Hassan, W., Choudhary, M., & Palo, I. (2022). Design and applications of Rogowski coil sensors for power system measurements: A review. Measurement, 203, Article 112014. https://doi.org/10.1016/j.measurement.2022.112014
-
Shang, Y., Li, H., Wang, J., Wu, J., & He, X. (2012, May 28-31). Analysis and design of a current transformer fed power supply from high AC voltage cable. In 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, https://doi.org/10.1109/ISIE.2012.6237080
-
Shepard, D. E., & Yauch, D. W. (2000). An overview of Rogowski coil current sensing technology (Technical report). LEM High Current Systems.
-
Shi, Y., Xin, Z., Loh, P. C., & Blaabjerg, F. (2020). A review of traditional helical to recent miniaturized printed circuit board Rogowski coils for power-electronic applications. IEEE Transactions on Power Electronics, 35(11), 12207-12222. https://doi.org/10.1109/TPEL.2020.2984055
-
Takahashi, S., Ogasawara, S., Takemoto, M., Orikawa, K., & Tamate, M. (2019, November 25-28). Experimental evaluation of the relationship between filter inductor impedances and dimensional resonances of MnZn ferrites. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, https://doi.org/10.1109/IFEEC47410.2019.9015169.
-
Timsit, R. S. (2008). High speed electronic connector design: A review of electrical and electromagnetic properties of passive contact elements—part 1. IEICE transactions on electronics, 91(8), 1178-1191. https://doi.org/10.1093/ietele/e91-c.8.1178
-
Wang, J., Wang, H., Mao, M., & Ma, X. (2024). Analysis and optimization of the stray capacitance of Rogowski coils. Applied Sciences, 14(17), Article 7748. https://doi.org/10.3390/app14177748
-
Wei, C., Lin, C., Boyang, M., Yuntao, G., & Shi, Y. (2020, October 18-21). Development of magnetic core framework for flexible Rogowski coil current transducer. In Proceedings of IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, https://doi.org/10.1109/IECON43393.2020.9254471
-
Xin, Z., Yao, Y., Kang, J., Li, Q., Zhou, Z., & Shi, Y. (2025). A closed-loop compensated Rogowski coil current sensor for three-phase inverter. IEEE Transactions on Power Electronics. 40(1), 2126-2138. https://doi.org/10.1109/TPEL.2024.3464121
-
Yu, H., Yuan, J., & Zou, J. (2006). Design of novel structure current transformer with shielding coils for overcoming the saturation of core. IEEE Transactions on Magnetics, 42(4), 1431-1434. https://doi.org/10.1109/TMAG.2006.872478
-
Zárybnická, L., Pagáč, M., Ševčík, R., Pokorný, J., & Marek, M. (2023). Effect of topology parameters on physical–mechanical properties of magnetic PLA 3D-printed structures. Magnetochemistry, 9(12), Article 232. https://doi.org/10.3390/magnetochemistry9120232
-
Zhan, Y., Feng, G., Wan, J., Li, X., Jin, R., Sun, P., Zhao, Z. & Cui, X. (2024). PCB Rogowski coil array with discrete electrostatic shielding for current measurement of paralleled chips in power devices. IEEE Transactions on Power Electronics, 39(8), 10276-10286. https://doi.org/10.1109/TPEL.2024.3392937
-
Zhang, W., Sohid, S. B., Wang, F., Cui, H., & Holzinger, B. (2021). High-bandwidth combinational Rogowski coil for SiC MOSFET power module. IEEE Transactions on power electronics, 37(4), 4397-4405. https://doi.org/10.1109/TPEL.2021.3127545
Rogowski Coils with Nickel Alloy Flexible Core and Peroformance Comparisons
Year 2025,
Volume: 13 Issue: 4, 1601 - 1611, 30.10.2025
Gizem Merve Aydin
Emin Yıldırız
Abstract
The instantaneous currents must be measured precisely and accurately in order to monitor electrical circuits under different operating conditions. Rogowski Coils (RC) can be easily connected even in narrow spaces where the measuring device cannot enter. They perform current measurement using the secondary voltages produced at a few mV levels even at the nominal currents (3000 - 60000 A). Therefore, it is difficult to make measurements with RCs, especially at low current values such as a few ten amperes, and the results are prone to the measurement errors. In order to increase the measurement sensitivity without changing the physical dimensions of the RC, a magnetic-core structure can be preferred instead of an air-core. In this paper, the magnetic filaments have been produced using nickel alloys at different ratios (40% and 60%). Flexible magnetic-core RCs have been developed by winding the magnetic filaments. Considering the flexibility of the core, the magnetic filaments have been produced in two different alloy ratios. The relative permeabilities of the developed magnetic filaments have been determined by experimental studies and their linear characteristics in the range of 5-400 A have been verified by finite element analysis.
Ethical Statement
This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.
Supporting Institution
This work is supported by Düzce University Scientific Project (Project no: 2022.06.03.1349). The authors thank Düzce University for their support.
Project Number
2022.06.03-1349
References
-
Accuenergy. (2025, February 25). AcuCT Flex Series Rogowski Coil CT datasheet. https://accucdn.accuenergy.com/wp-content/uploads/acuct-flex-series-rogowski-coil-ct-datasheet.pdf
-
Al-Sowayan, S. (2014). Improved mutual inductance of Rogowski coil using hexagonal core. World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 8(2), 293-296.
-
Anigi, E., Karacasu, Ö., & Hocaoğlu, M. H. (2012, November 29 – December 1). Ölçü akım transformatörlerinin doğruluğunun sinüzoidal olmayan şartlar altında deneysel incelenmesi, In Proceedings of ELECO 2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu (pp. 148-152). Bursa Türkiye.
-
Bawankule, P., & Chandrasekaran, K. (2022, October 7-9). Rogowski coil with an active integrator for impulse current measurement. In Proceedings of the 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT) (pp. 1–6). Bangalore, India.
-
Bawankule, P., & Chandrasekaran, K. (2025, January 20-22). Analyzing the Performance of 3D PCB Rogowski Coil in Pulsed Current Measurement Using Finite Element Method. In Proceedings of the 2025 Fourth International Conference on Power, Control and Computing Technologies (ICPC2T) (pp. 1–6). Raipur, India, https://doi.org/10.1109/ICPC2T63847.2025.10958704
-
Chen, K. L., & Chen, N. (2010). A new method for power current measurement using a coreless Hall effect current transformer. IEEE Transactions on Instrumentation and Measurement, 60(1), 158-169. https://doi.org/10.1109/TIM.2010.2049234
-
Crescentini, M., Syeda, S. F., & Gibiino, G. P. (2021). Hall-effect current sensors: Principles of operation and implementation techniques. IEEE Sensors Journal, 22(11), 10137-10151. https://doi.org/10.1109/JSEN.2021.3119766
Çınar, H., İmal, N., & Şener, E. (2016). Akım ölçü transformatörleri çalışma bölgesi analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(2), 782-790.
-
Dubickas, V., & Edin, H. (2007). High-frequency model of the Rogowski coil with a small number of turns. IEEE Transactions on Instrumentation and Measurement, 56(6), 2284-2288. https://doi.org/10.1109/TIM.2007.907965
-
Han, R. Y., Wu, J. W., Ding, W. D., Jing, Y., Zhou, H. B., Liu, Q. J., & Qiu, A. C. (2015). Hybrid PCB Rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Transactions on Plasma Science, 43(10), 3555-3561. https://doi.org/10.1109/TPS.2015.2415517
-
Hlavacek, J., Prochazka, R., Draxler, K., & Kvasnicka, V. (2008, September 22-24). The Rogowski coil design software. In Proceedings of the16th IMEKO TC4 International Symposium. Florence, Italy.
-
Kang, J., Zhu, A., Chen, Y., Luo, H., Yao, L., & Xin, Z. (2023). An online gate oxide degradation monitoring method for SiC MOSFETs with contactless PCB Rogowski coil approach. IEEE Transactions on Power Electronics, 38(8), 9673-9684. https://doi.org/10.1109/TPEL.2023.3270820
-
Liu, Y., Lin, F., Zhang, Q., & Zhong, H. (2010). Design and construction of a Rogowski coil for measuring wide pulsed current. IEEE Sensors Journal, 11(1), 123-130. https://doi.org/10.1109/JSEN.2010.2052034
-
Marracci, M., Tellini, B., & Bertolucci, E. (2017, May). Study and characterization of a Rogowski coil with superparamagnetic magnetite core. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, https://doi.org/10.1109/I2MTC.2017.7969951
-
Nanyan, A. N., Isa, M., Hamid, H. A., Rohani, M. N. K., & Ismail, B. (2018). The Rogowski coil sensor in high current application: A review. IOP Conference Series: Materials Science and Engineering, 318(1), Article 012054. https://doi.org/10.1088/1757-899X/318/1/012054
-
Pozo, B., Garate, J. I., Araujo, J. Á., & Ferreiro, S. (2019). Energy harvesting technologies and equivalent electronic structural models. Electronics, 8(5), Article 486. https://doi.org/10.3390/electronics8050486
-
Prince, T. J., Riley, E. J., & Miller, S. W. (2021). Additive manufacturing of PLA-based microwave circuit-analog absorbers. IEEE Transactions on Electromagnetic Compatibility, 63(5), 1341-1346. https://doi.org/10.1109/TEMC.2020.3044014
-
Ranasingh, S., Pradhan, T., & Raju, D. K. (2022). Contactless current sensor with novel coil designs and Hall-effect based electron device for dynamic precision adjustment. IEEE Sensors Journal, 22(21), 20626-20634. https://doi.org/10.1109/JSEN.2022.3207276
-
Samimi, M. H., Mahari, A., Farahnakian, M. A., & Mohseni, H. (2014). The Rogowski coil principles and applications: A review. IEEE Sensors Journal, 15(2), 651-658. https://doi.org/10.1109/JSEN.2014.2362940
-
Shafiq, M., Stewart, B. G., Hussain, G. A., Hassan, W., Choudhary, M., & Palo, I. (2022). Design and applications of Rogowski coil sensors for power system measurements: A review. Measurement, 203, Article 112014. https://doi.org/10.1016/j.measurement.2022.112014
-
Shang, Y., Li, H., Wang, J., Wu, J., & He, X. (2012, May 28-31). Analysis and design of a current transformer fed power supply from high AC voltage cable. In 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, https://doi.org/10.1109/ISIE.2012.6237080
-
Shepard, D. E., & Yauch, D. W. (2000). An overview of Rogowski coil current sensing technology (Technical report). LEM High Current Systems.
-
Shi, Y., Xin, Z., Loh, P. C., & Blaabjerg, F. (2020). A review of traditional helical to recent miniaturized printed circuit board Rogowski coils for power-electronic applications. IEEE Transactions on Power Electronics, 35(11), 12207-12222. https://doi.org/10.1109/TPEL.2020.2984055
-
Takahashi, S., Ogasawara, S., Takemoto, M., Orikawa, K., & Tamate, M. (2019, November 25-28). Experimental evaluation of the relationship between filter inductor impedances and dimensional resonances of MnZn ferrites. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, https://doi.org/10.1109/IFEEC47410.2019.9015169.
-
Timsit, R. S. (2008). High speed electronic connector design: A review of electrical and electromagnetic properties of passive contact elements—part 1. IEICE transactions on electronics, 91(8), 1178-1191. https://doi.org/10.1093/ietele/e91-c.8.1178
-
Wang, J., Wang, H., Mao, M., & Ma, X. (2024). Analysis and optimization of the stray capacitance of Rogowski coils. Applied Sciences, 14(17), Article 7748. https://doi.org/10.3390/app14177748
-
Wei, C., Lin, C., Boyang, M., Yuntao, G., & Shi, Y. (2020, October 18-21). Development of magnetic core framework for flexible Rogowski coil current transducer. In Proceedings of IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, https://doi.org/10.1109/IECON43393.2020.9254471
-
Xin, Z., Yao, Y., Kang, J., Li, Q., Zhou, Z., & Shi, Y. (2025). A closed-loop compensated Rogowski coil current sensor for three-phase inverter. IEEE Transactions on Power Electronics. 40(1), 2126-2138. https://doi.org/10.1109/TPEL.2024.3464121
-
Yu, H., Yuan, J., & Zou, J. (2006). Design of novel structure current transformer with shielding coils for overcoming the saturation of core. IEEE Transactions on Magnetics, 42(4), 1431-1434. https://doi.org/10.1109/TMAG.2006.872478
-
Zárybnická, L., Pagáč, M., Ševčík, R., Pokorný, J., & Marek, M. (2023). Effect of topology parameters on physical–mechanical properties of magnetic PLA 3D-printed structures. Magnetochemistry, 9(12), Article 232. https://doi.org/10.3390/magnetochemistry9120232
-
Zhan, Y., Feng, G., Wan, J., Li, X., Jin, R., Sun, P., Zhao, Z. & Cui, X. (2024). PCB Rogowski coil array with discrete electrostatic shielding for current measurement of paralleled chips in power devices. IEEE Transactions on Power Electronics, 39(8), 10276-10286. https://doi.org/10.1109/TPEL.2024.3392937
-
Zhang, W., Sohid, S. B., Wang, F., Cui, H., & Holzinger, B. (2021). High-bandwidth combinational Rogowski coil for SiC MOSFET power module. IEEE Transactions on power electronics, 37(4), 4397-4405. https://doi.org/10.1109/TPEL.2021.3127545