Research Article
BibTex RIS Cite

Lityum-iyon Pillerin 40°C'de Uzun Vadeli Kapasite Bozulması: Termal Yönetim İçin Spline Regresyon Yaklaşımı

Year 2025, Volume: 13 Issue: 4, 1505 - 1517, 30.10.2025
https://doi.org/10.29130/dubited.1669254

Abstract

Lityum-iyon piller, modern enerji depolama sistemleri için kritik öneme sahip olsa da yüksek sıcaklıklardaki kapasite bozulmaları önemli bir sorun olmaya devam etmektedir. Bu çalışma, doğrusal olmayan bozulma eğilimlerini modellemek amacıyla spline regresyon kullanarak, sürekli yüksek sıcaklık ortamına maruz bırakılan lityum-iyon pillerin uzun vadeli kapasite kaybını incelemektedir. Oxford Pil Bozulma Veri Seti'nden yararlanarak, uzun döngüler boyunca sekiz lityum-iyon poşet pil analiz edilmiş ve karmaşık bozulma davranışları ile sıcaklık kaynaklı kapasite kayıpları ölçülmüştür. Sonuçlar, yüksek sıcaklıklar ile hızlanan bozulma arasında güçlü bir korelasyon olduğunu göstermiş; spline regresyonun gözlemlenen verilere neredeyse mükemmel uyum sağladığı (R² = 1,0000) ve doğrusal olmayan bozulma modellerinde etkinliğini kanıtladığı görülmüştür. Analizler, üretim farklılıklarından kaynaklanan küçük sapmalar dışında, hücreler arasında tutarlı bir bozulma eğilimi olduğunu ortaya koymuştur. İlk döngülerdeki sıcaklık profilleri, lityum kaplama ve Katı Elektrolit Ara Yüzü (SEI) büyümesi gibi yan reaksiyonları hızlandıran termal dinamiklerin rolünü vurgulamıştır. Bu bulgular, bozulmayı azaltmak ve pil ömrünü uzatmak için sağlam termal yönetim sistemlerinin gerekliliğini göstermektedir. Çalışma, elektrikli araçlar ve şebeke depolama gibi yüksek sıcaklık uygulamalarında pil tasarımının ve yönetim stratejilerinin optimize edilmesine yönelik uygulanabilir içgörüler sunmaktadır.

References

  • Apribowo, C. H. B., Sarjiya, S., Hadi, S. P., & Wijaya, F. D. (2022). Optimal planning of battery energy storage systems by considering battery degradation due to ambient temperature: A review, challenges, and new perspective. Batteries, 8(12), Article 290. https://doi.org/10.3390/batteries8120290
  • Birkl, C. R., (2017). Diagnosis and prognosis of degradation in lithium-ion batteries (Doctoral dissertation, Department of Engineering Science, University of Oxford).
  • Cavalheiro, G. M., Iriyama, T., Nelson, G. J., Huang, S., & Zhang, G. (2020). Effects of nonuniform temperature distribution on degradation of lithium-ion batteries. Journal of Electrochemical Energy Conversion and Storage, 17(2), Article 021101. https://doi.org/10.1115/1.4045205
  • Fan, L., Khodadadi, J. M., & Pesaran, A. A. (2013). A parametric study on thermal management of an air-cooled lithium-ıon battery module for plug-ın hybrid electric vehicles. Journal of Power Sources, 238, 301–312. https://doi.org/10.1016/j.jpowsour.2013.03.050
  • Fleckenstein, M., Bohlen, O., Roscher, M. A., & Bäker, B. (2011). Current density and state of charge ınhomogeneities in Li-ıon battery cells with LiFePO4 as cathode material due to temperature gradients. Journal of Power Sources, 196(10), 4769–4778. https://doi.org/10.1016/j.jpowsour.2011.01.043
  • Howey, D., & Birkl, C. (2017). Oxford Battery Degradation Dataset 1 [Data set; Data collected: 2015-01-08 – 2016-12-31]. University of Oxford. https://doi.org/10.5287/BODLEIAN:KO2KDMYGG
  • Kokam Battery Manufacturing Co., Ltd. (2025). Kokam Battery Manufacturing Co., Ltd. Retrieved March 17, 2025, from http://www.kokamcom.com/
  • Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), Article 494. https://doi.org/10.1021/ed061p494
  • Lei, Z., Zhang, C., Li, J., Fan, G., & Lin, Z. (2013). A study on the low-temperature performance of lithium-ion battery for electric vehicles. Qiche Gongcheng (Automotive Engineering), 35(10), 927-933. https://pure.bit.edu.cn/en/publications/a-study-on-the-low-temperature-performance-of-lithium-ion-battery
  • Li, Z., Zhang, J., Wu, B., Huang, J., Nie, Z., Sun, Y., An, F., & Wu, N. (2013). Examining temporal and spatial variations of ınternal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources, 241, 536–553. https://doi.org/10.1016/j.jpowsour.2013.04.117
  • Liao, L., Zuo, P., Ma, Y., Chen, X. Q., An, Y., Gao, Y., & Yin, G. (2012). Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta, 60, 269-273. https://doi.org/10.1016/j.electacta.2011.11.041
  • Lindgren, J., & Lund, P. D. (2016). Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources, 328, 37-45. https://doi.org/10.1016/j.jpowsour.2016.07.038
  • Lu, Z., Yu, X. L., Wei, L. C., Cao, F., Zhang, L. Y., Meng, X. Z., & Jin, L. W. (2019). A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Applied Thermal Engineering, 158, Article 113800. https://doi.org/10.1016/j.applthermaleng.2019.113800
  • Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., & Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 28(6), 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002
  • Qu, J. G., Jiang, Z. Y., & Zhang, J. F. (2022). Investigation on lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging. Journal of Energy Storage, 52(Part A), Article 104811. https://doi.org/10.1016/j.est.2022.104811
  • Robinson, J. B., Darr, J. A., Eastwood, D. S., Hinds, G., Lee, P. D., Shearing, P. R., Taiwo, O. O., & Brett, D. J. L. (2014). Non-uniform temperature distribution in Li-ion batteries during discharge—a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. Journal of Power Sources, 252, 51–57. https://doi.org/10.1016/j.jpowsour.2013.11.059
  • Shen, W., Wang, N., Zhang, J., Wang, F., & Zhang, G. (2022). Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging. ACS Omega, 7(49), 44733-44742. https://doi.org/10.1021/acsomega.2c04093
  • Studden, W. J. (1971). Optimal designs and spline regression. In J. S. Rustagi (Ed.), Optimizing methods in statistics (pp. 63–76). Academic Press. https://doi.org/10.1016/B978-0-12-604550-5.50008-0
  • Sun, P., Zhang, X., Wang, S., & Zhu, Y. (2022). Lithium-ion battery degradation caused by overcharging at low temperatures. Thermal Science and Engineering Progress, 30, Article 101266. https://doi.org/10.1016/j.tsep.2022.101266
  • Wang, T., Tseng, K. J., Zhao, J., & Wei, Z. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy, 134, 229–238. https://doi.org/10.1016/j.apenergy.2014.08.013
  • Wu, B., Li, Z., & Zhang, J. (2015). Thermal design for the pouch-type large-format lithium-ion batteries: I. thermo-electrical modeling and origins of temperature non-uniformity. Journal of The Electrochemical Society., 162(1), A181–A191. https://doi.org/10.1149/2.0831501jes
  • Zhang, G., Cao, L., Ge, S., Wang, C.-Y., Shaffer, C. E., & Rahn, C. D. (2014). In situ measurement of radial temperature distributions in cylindrical Li-ion cells. Journal of The Electrochemical Society, 161(10), 1499–1507. https://doi.org/10.1149/2.0051410jes
  • Zhang, S., Xu, K., & Jow, T. (2003). Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. Journal of Solid State Electrochemistry, 7, 147–151. https://doi.org/10.1007/s10008-002-0300-9

Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights

Year 2025, Volume: 13 Issue: 4, 1505 - 1517, 30.10.2025
https://doi.org/10.29130/dubited.1669254

Abstract

Lithium-ion batteries are critical for modern energy storage systems, yet their capacity degradation under high temperatures remains a significant challenge. This study investigates the long-term capacity fade of lithium-ion batteries subjected to a consistent high-temperature environment using spline regression to model non-linear degradation trends. Utilizing the Oxford Battery Degradation Dataset, eight lithium-ion pouch cells were analyzed over extended cycles, and complex degradation behaviors and temperature-induced capacity losses were measured. Results demonstrated a strong correlation between elevated temperatures and accelerated degradation, with spline regression achieving near-perfect fits (R² = 1.0000) to the observed data, highlighting its efficacy in modeling non-linear fade patterns. The analysis revealed uniform degradation trends across cells, with minor variations attributed to manufacturing inconsistencies. Temperature profiles during initial cycles underscored the role of thermal dynamics in accelerating side reactions like lithium plating and Solid Electrolyte Interface (SEI) growth. These findings emphasize the necessity of robust thermal management systems to mitigate degradation and extend battery lifespan. The study provides actionable insights for optimizing battery design and management strategies in high-temperature applications, such as electric vehicles and grid storage.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

References

  • Apribowo, C. H. B., Sarjiya, S., Hadi, S. P., & Wijaya, F. D. (2022). Optimal planning of battery energy storage systems by considering battery degradation due to ambient temperature: A review, challenges, and new perspective. Batteries, 8(12), Article 290. https://doi.org/10.3390/batteries8120290
  • Birkl, C. R., (2017). Diagnosis and prognosis of degradation in lithium-ion batteries (Doctoral dissertation, Department of Engineering Science, University of Oxford).
  • Cavalheiro, G. M., Iriyama, T., Nelson, G. J., Huang, S., & Zhang, G. (2020). Effects of nonuniform temperature distribution on degradation of lithium-ion batteries. Journal of Electrochemical Energy Conversion and Storage, 17(2), Article 021101. https://doi.org/10.1115/1.4045205
  • Fan, L., Khodadadi, J. M., & Pesaran, A. A. (2013). A parametric study on thermal management of an air-cooled lithium-ıon battery module for plug-ın hybrid electric vehicles. Journal of Power Sources, 238, 301–312. https://doi.org/10.1016/j.jpowsour.2013.03.050
  • Fleckenstein, M., Bohlen, O., Roscher, M. A., & Bäker, B. (2011). Current density and state of charge ınhomogeneities in Li-ıon battery cells with LiFePO4 as cathode material due to temperature gradients. Journal of Power Sources, 196(10), 4769–4778. https://doi.org/10.1016/j.jpowsour.2011.01.043
  • Howey, D., & Birkl, C. (2017). Oxford Battery Degradation Dataset 1 [Data set; Data collected: 2015-01-08 – 2016-12-31]. University of Oxford. https://doi.org/10.5287/BODLEIAN:KO2KDMYGG
  • Kokam Battery Manufacturing Co., Ltd. (2025). Kokam Battery Manufacturing Co., Ltd. Retrieved March 17, 2025, from http://www.kokamcom.com/
  • Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), Article 494. https://doi.org/10.1021/ed061p494
  • Lei, Z., Zhang, C., Li, J., Fan, G., & Lin, Z. (2013). A study on the low-temperature performance of lithium-ion battery for electric vehicles. Qiche Gongcheng (Automotive Engineering), 35(10), 927-933. https://pure.bit.edu.cn/en/publications/a-study-on-the-low-temperature-performance-of-lithium-ion-battery
  • Li, Z., Zhang, J., Wu, B., Huang, J., Nie, Z., Sun, Y., An, F., & Wu, N. (2013). Examining temporal and spatial variations of ınternal temperature in large-format laminated battery with embedded thermocouples. Journal of Power Sources, 241, 536–553. https://doi.org/10.1016/j.jpowsour.2013.04.117
  • Liao, L., Zuo, P., Ma, Y., Chen, X. Q., An, Y., Gao, Y., & Yin, G. (2012). Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta, 60, 269-273. https://doi.org/10.1016/j.electacta.2011.11.041
  • Lindgren, J., & Lund, P. D. (2016). Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources, 328, 37-45. https://doi.org/10.1016/j.jpowsour.2016.07.038
  • Lu, Z., Yu, X. L., Wei, L. C., Cao, F., Zhang, L. Y., Meng, X. Z., & Jin, L. W. (2019). A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Applied Thermal Engineering, 158, Article 113800. https://doi.org/10.1016/j.applthermaleng.2019.113800
  • Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., & Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 28(6), 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002
  • Qu, J. G., Jiang, Z. Y., & Zhang, J. F. (2022). Investigation on lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging. Journal of Energy Storage, 52(Part A), Article 104811. https://doi.org/10.1016/j.est.2022.104811
  • Robinson, J. B., Darr, J. A., Eastwood, D. S., Hinds, G., Lee, P. D., Shearing, P. R., Taiwo, O. O., & Brett, D. J. L. (2014). Non-uniform temperature distribution in Li-ion batteries during discharge—a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. Journal of Power Sources, 252, 51–57. https://doi.org/10.1016/j.jpowsour.2013.11.059
  • Shen, W., Wang, N., Zhang, J., Wang, F., & Zhang, G. (2022). Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging. ACS Omega, 7(49), 44733-44742. https://doi.org/10.1021/acsomega.2c04093
  • Studden, W. J. (1971). Optimal designs and spline regression. In J. S. Rustagi (Ed.), Optimizing methods in statistics (pp. 63–76). Academic Press. https://doi.org/10.1016/B978-0-12-604550-5.50008-0
  • Sun, P., Zhang, X., Wang, S., & Zhu, Y. (2022). Lithium-ion battery degradation caused by overcharging at low temperatures. Thermal Science and Engineering Progress, 30, Article 101266. https://doi.org/10.1016/j.tsep.2022.101266
  • Wang, T., Tseng, K. J., Zhao, J., & Wei, Z. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy, 134, 229–238. https://doi.org/10.1016/j.apenergy.2014.08.013
  • Wu, B., Li, Z., & Zhang, J. (2015). Thermal design for the pouch-type large-format lithium-ion batteries: I. thermo-electrical modeling and origins of temperature non-uniformity. Journal of The Electrochemical Society., 162(1), A181–A191. https://doi.org/10.1149/2.0831501jes
  • Zhang, G., Cao, L., Ge, S., Wang, C.-Y., Shaffer, C. E., & Rahn, C. D. (2014). In situ measurement of radial temperature distributions in cylindrical Li-ion cells. Journal of The Electrochemical Society, 161(10), 1499–1507. https://doi.org/10.1149/2.0051410jes
  • Zhang, S., Xu, K., & Jow, T. (2003). Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. Journal of Solid State Electrochemistry, 7, 147–151. https://doi.org/10.1007/s10008-002-0300-9
There are 23 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage
Journal Section Articles
Authors

Coşkun Fırat 0000-0002-2853-8940

Publication Date October 30, 2025
Submission Date April 2, 2025
Acceptance Date June 21, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Fırat, C. (2025). Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights. Duzce University Journal of Science and Technology, 13(4), 1505-1517. https://doi.org/10.29130/dubited.1669254
AMA Fırat C. Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights. DUBİTED. October 2025;13(4):1505-1517. doi:10.29130/dubited.1669254
Chicago Fırat, Coşkun. “Long-Term Capacity Degradation of Lithium-Ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1505-17. https://doi.org/10.29130/dubited.1669254.
EndNote Fırat C (October 1, 2025) Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights. Duzce University Journal of Science and Technology 13 4 1505–1517.
IEEE C. Fırat, “Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights”, DUBİTED, vol. 13, no. 4, pp. 1505–1517, 2025, doi: 10.29130/dubited.1669254.
ISNAD Fırat, Coşkun. “Long-Term Capacity Degradation of Lithium-Ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights”. Duzce University Journal of Science and Technology 13/4 (October2025), 1505-1517. https://doi.org/10.29130/dubited.1669254.
JAMA Fırat C. Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights. DUBİTED. 2025;13:1505–1517.
MLA Fırat, Coşkun. “Long-Term Capacity Degradation of Lithium-Ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1505-17, doi:10.29130/dubited.1669254.
Vancouver Fırat C. Long-Term Capacity Degradation of Lithium-ion Batteries at 40°C: A Spline Regression Approach for Thermal Management Insights. DUBİTED. 2025;13(4):1505-17.