Research Article
BibTex RIS Cite

Hidrojen Destekli Dik Manyetik Anizotropi: Co/Ir Arayüzü Örneği

Year 2025, Volume: 13 Issue: 4, 1583 - 1591, 30.10.2025
https://doi.org/10.29130/dubited.1704212

Abstract

Manyetik anizotropi, ileri düzey spintronik aygıtlar, bilgi depolama sistemleri ve gaz sensörlerinin geliştirilmesi için anahtar bir özelliktir. Bu çalışmada, Co/Ir arayüzünde hidrojen destekli dikey manyetik anizotropi (PMA) olgusu, birinci ilke yoğunluk fonksiyonel teorisi (DFT) hesaplamaları kullanılarak incelenmiştir. Başlangıçta, Co/Ir sistemi düzlemsel manyetik anizotropi (IMA) göstermektedir. Ancak hidrojen absorbsiyonunun ardından, manyetik anizotropi enerjisinde belirgin bir artış gözlemlenmiş ve sistemin IMA'dan PMA'ya geçtiği tespit edilmiştir. Bu davranış, hidrojen absorbsiyonunun PMA'dan IMA'ya geçişe neden olduğu Co/Rh sistemi ile zıtlık göstermektedir. Bu geçişlerin altında yatan mekanizma, arayüzdeki atomik orbitallerin hibritleşmesiyle ilişkilidir. Elde edilen bulgular, Co/Ir arayüzlerinde manyetik anizotropinin hidrojen yoluyla geri dönüşümlü şekilde kontrol edilebileceğini göstererek, bu sistemi spintronik ve gaz algılama teknolojilerinde potansiyel olarak kullanılabilir hale getirmektedir.

References

  • Aksu, P., Deger, C., Yavuz, I., & Yildiz, F. (2020). Strain-promoted perpendicular magnetic anisotropy in Co–Rh alloys. Applied Physics Letters, 116(21), Article 212402. https://doi.org/10.1063/5.0010606
  • Bauer, U., Yao, L., Tan, A. J., Agrawal, P., Emori, S., Tuller, H. L., van Dijken, S., & Beach, G. S. D. (2015). Magneto-ionic control of interfacial magnetism. Nature Materials, 14(2), 174–181. https://doi.org/10.1038/nmat4134
  • Bi, C., Liu, Y., Newhouse-Illige, T., Xu, M., Rosales, M., Freeland, J. W., Mryasov, O., Zhang, S., te Velthuis, S. G. E., & Wang, W. (2014). Reversible control of Co magnetism by voltage-induced oxidation. Physical Review Letters, 113(26), Article 267202. https://doi.org/10.1103/PhysRevLett.113.267202
  • Broddefalk, A., Nordblad, P., Blomqvist, P., & Isberg, P. (2002). In-plane magnetic anisotropy of Fe/V(001) superlattices. Journal of Magnetism and Magnetic Materials, 241(2–3), 260–270. https://doi.org/10.1016/S0304-8853(01)01379-8
  • Capku, Z., Deger, C., Aksu, P., & Yildiz, F. (2020). Origin of perpendicular magnetic anisotropy in yttrium iron garnet thin films grown on Si(100). IEEE Transactions on Magnetics, 56(11), 1–6. https://doi.org/10.1109/TMAG.2020.3021646
  • Causer, G. L., Kostylev, M., Cortie, D. L., Lueng, C., Callori, S. J., Wang, X. L., & Klose, F. (2019). In operando study of hydrogen-induced switching of magnetic anisotropy at the Co/Pd interface for magnetic hydrogen gas sensing. ACS Applied Materials & Interfaces, 11(38), 35420–35428. https://doi.org/10.1021/acsami.9b10535
  • Chang, C. S., Kostylev, M., & Ivanov, E. (2013). Metallic spintronic thin film as a hydrogen sensor. Applied Physics Letters, 102(14), Article 142405. https://doi.org/10.1063/1.4800923
  • Deger, C. (2020a). Multibit racetrack memory. Nanotechnology, 31(49), Article 495209. https://doi.org/10.1088/1361-6528/abb42e
  • Deger, C. (2020b). Strain-enhanced Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Scientific Reports, 10(1), Article 12314. https://doi.org/10.1038/s41598-020-69360-w
  • Deger, C., Yavuz, I., & Yildiz, F. (2019). Impact of interlayer coupling on magnetic skyrmion size. Journal of Magnetism and Magnetic Materials, 489, Article 165399. https://doi.org/10.1016/j.jmmm.2019.165399
  • Demiroglu, E., Hancioglu, K., Yavuz, I., Avci, C. O., & Deger, C. (2024). Oscillatory behavior of interlayer Dzyaloshinskii–Moriya interaction by spacer thickness variation. Physical Review B, 109(14), Article 144422. https://doi.org/10.1103/PhysRevB.109.144422
  • Dieny, B., & Chshiev, M. (2017). Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 89(2), Article 025008. https://doi.org/10.1103/RevModPhys.89.025008
  • Erkovan, M., Deger, C., Cardoso, S., & Kilinc, N. (2022). Hydrogen-sensing properties of ultrathin Pt–Co alloy films. Chemosensors, 10(12), Article 512. https://doi.org/10.3390/chemosensors10120512
  • Gilbert, D. A., Grutter, A. J., Arenholz, E., Liu, K., Kirby, B. J., Borchers, J. A., & Maranville, B. B. (2016). Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nature Communications, 7, Article 12264. https://doi.org/10.1038/ncomms12264
  • Harumoto, T., Song, J., Lin, Y. H., & Shi, J. (2025). Nanometer-thick palladium–cobalt alloy films for hydrogen sensors and hydrogen-mediated devices. ACS Applied Nano Materials, 8(14), 7154–7162. https://doi.org/10.1021/acsanm.5c00392
  • Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G. S. D., Fullerton, E. E., Leighton, C., MacDonald, A. H., Ralph, D. C., Arena, D. A., Dürr, H. A., Fischer, P., Grollier, J., Heremans, J. P., Jungwirth, T., Kimel, A. V., Koopmans, B., Krivorotov, I. N., May, S. J., Petford-Long, A. K., … Zink, B. L. (2017). Interface-induced phenomena in magnetism. Reviews of Modern Physics, 89(2), Article 025006. https://doi.org/10.1103/RevModPhys.89.025006
  • Hsu, C.-C., Chang, P.-C., Chen, Y.-H., Liu, C.-M., Wu, C.-T., Yen, H.-W., & Lin, W.-C. (2018). Reversible 90-degree rotation of Fe magnetic moment using hydrogen. Scientific Reports, 8(1), Article 3251. https://doi.org/10.1038/s41598-018-21712-3
  • Klyukin, K., Beach, G., & Yildiz, B. (2020). Hydrogen tunes magnetic anisotropy by affecting local hybridization at the interface of a ferromagnet with nonmagnetic metals. Physical Review Materials, 4(10), Article 104416. https://doi.org/10.1103/PhysRevMaterials.4.104416
  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
  • Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558–561. https://doi.org/10.1103/PhysRevB.47.558
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758
  • Lau, Y.-C., Chi, Z., Taniguchi, T., Kawaguchi, M., Shibata, G., Kawamura, N., Suzuki, M., Fukami, S., Fujimori, A., Ohno, H., & Hayashi, M. (2019). Giant perpendicular magnetic anisotropy in Ir/Co/Pt multilayers. Physical Review Materials, 3(10), Article 104419. https://doi.org/10.1103/PhysRevMaterials.3.104419
  • Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A. A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., & Suzuki, Y. (2009). Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 4(3), 158–161. https://doi.org/10.1038/nnano.2008.406
  • Munbodh, K., Perez, F. A., & Lederman, D. (2012). Changes in magnetic properties of Co/Pd multilayers induced by hydrogen absorption. Journal of Applied Physics, 111(12), Article 123919. http://dx.doi.org/10.1063/1.4729797
  • Okabayashi, J., Miura, Y., & Munekata, H. (2018). Anatomy of interfacial spin–orbit coupling in Co/Pd multilayers using x-ray magnetic circular dichroism and first-principles calculations. Scientific Reports, 8(1), Article 8303. https://doi.org/10.1038/s41598-018-26195-w
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), Article 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  • Sisman, O., Erkovan, M., & Kilinc, N. (2024). Chapter 5.1 – Hydrogen sensors for safety applications. In D. Jaiswal-Nagar, V. Dixit, & S. Devasahayam (Eds.), Towards Hydrogen Infrastructure: Advances and Challenges in Preparing for the Hydrogen Economy (pp. 275–314). Elsevier. https://doi.org/10.1016/B978-0-323-95553-9.00061-3
  • Soumyanarayanan, A., Raju, M., Gonzalez Oyarce, A. L., Tan, A. K. C., Im, M.-Y., Petrovic, A. P., Ho, P., Khoo, K. H., Tran, M., Gan, C. K., Ernult, F., & Panagopoulos, C. (2017). Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nature Materials, 16(9), 898–904. https://doi.org/10.1038/nmat4934
  • Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H., & Gong, X. G. (2011). Predicting the spin-lattice order of frustrated systems from first principles. Physical Review B, 84(22), Article 224429. https://doi.org/10.1103/PhysRevB.84.224429
  • Yang, H., Thiaville, A., Rohart, S., Fert, A., & Chshiev, M. (2015). Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Physical Review Letters, 115(26), Article 267210. https://doi.org/10.1103/PhysRevLett.115.267210
  • Zhang, S., Zhang, J., Zhang, Q., Barton, C., Neu, V., Zhao, Y., Hou, Z., Wen, Y., Gong, C., Kazakova, O., Wang, W., Peng, Y., Garanin, D. A., Chudnovsky, E. M., & Zhang, X. (2018). Direct writing of room-temperature and zero-field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters, 112(13), Article 132405. https://doi.org/10.1063/1.5021172

Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface

Year 2025, Volume: 13 Issue: 4, 1583 - 1591, 30.10.2025
https://doi.org/10.29130/dubited.1704212

Abstract

Magnetic anisotropy at the nanoscale is a key property for developing advanced spintronic devices, information storage systems, and gas sensors. In this study, we investigate the hydrogen-assisted perpendicular magnetic anisotropy (PMA) in the Co/Ir interface through first-principles density functional theory calculations. Initially, the Co/Ir system exhibits in-plane magnetic anisotropy (IMA). Upon hydrogen absorption, a significant increase in magnetic anisotropy energy is observed, indicating a transition from IMA to PMA. This behavior contrasts sharply with the Co/Rh system, where hydrogen absorption leads to a reduction in magnetic anisotropy energy and a switch from PMA to IMA. The underlying mechanism of these transitions is linked to the hybridization of atomic orbitals at the interface. These findings highlight the potential of hydrogenation as a tool to reversibly control magnetic anisotropy in Co/Ir interfaces, paving the way for new applications in spintronics and gas sensing technologies.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Supporting Institution

This Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant number 1015902023.

References

  • Aksu, P., Deger, C., Yavuz, I., & Yildiz, F. (2020). Strain-promoted perpendicular magnetic anisotropy in Co–Rh alloys. Applied Physics Letters, 116(21), Article 212402. https://doi.org/10.1063/5.0010606
  • Bauer, U., Yao, L., Tan, A. J., Agrawal, P., Emori, S., Tuller, H. L., van Dijken, S., & Beach, G. S. D. (2015). Magneto-ionic control of interfacial magnetism. Nature Materials, 14(2), 174–181. https://doi.org/10.1038/nmat4134
  • Bi, C., Liu, Y., Newhouse-Illige, T., Xu, M., Rosales, M., Freeland, J. W., Mryasov, O., Zhang, S., te Velthuis, S. G. E., & Wang, W. (2014). Reversible control of Co magnetism by voltage-induced oxidation. Physical Review Letters, 113(26), Article 267202. https://doi.org/10.1103/PhysRevLett.113.267202
  • Broddefalk, A., Nordblad, P., Blomqvist, P., & Isberg, P. (2002). In-plane magnetic anisotropy of Fe/V(001) superlattices. Journal of Magnetism and Magnetic Materials, 241(2–3), 260–270. https://doi.org/10.1016/S0304-8853(01)01379-8
  • Capku, Z., Deger, C., Aksu, P., & Yildiz, F. (2020). Origin of perpendicular magnetic anisotropy in yttrium iron garnet thin films grown on Si(100). IEEE Transactions on Magnetics, 56(11), 1–6. https://doi.org/10.1109/TMAG.2020.3021646
  • Causer, G. L., Kostylev, M., Cortie, D. L., Lueng, C., Callori, S. J., Wang, X. L., & Klose, F. (2019). In operando study of hydrogen-induced switching of magnetic anisotropy at the Co/Pd interface for magnetic hydrogen gas sensing. ACS Applied Materials & Interfaces, 11(38), 35420–35428. https://doi.org/10.1021/acsami.9b10535
  • Chang, C. S., Kostylev, M., & Ivanov, E. (2013). Metallic spintronic thin film as a hydrogen sensor. Applied Physics Letters, 102(14), Article 142405. https://doi.org/10.1063/1.4800923
  • Deger, C. (2020a). Multibit racetrack memory. Nanotechnology, 31(49), Article 495209. https://doi.org/10.1088/1361-6528/abb42e
  • Deger, C. (2020b). Strain-enhanced Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Scientific Reports, 10(1), Article 12314. https://doi.org/10.1038/s41598-020-69360-w
  • Deger, C., Yavuz, I., & Yildiz, F. (2019). Impact of interlayer coupling on magnetic skyrmion size. Journal of Magnetism and Magnetic Materials, 489, Article 165399. https://doi.org/10.1016/j.jmmm.2019.165399
  • Demiroglu, E., Hancioglu, K., Yavuz, I., Avci, C. O., & Deger, C. (2024). Oscillatory behavior of interlayer Dzyaloshinskii–Moriya interaction by spacer thickness variation. Physical Review B, 109(14), Article 144422. https://doi.org/10.1103/PhysRevB.109.144422
  • Dieny, B., & Chshiev, M. (2017). Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 89(2), Article 025008. https://doi.org/10.1103/RevModPhys.89.025008
  • Erkovan, M., Deger, C., Cardoso, S., & Kilinc, N. (2022). Hydrogen-sensing properties of ultrathin Pt–Co alloy films. Chemosensors, 10(12), Article 512. https://doi.org/10.3390/chemosensors10120512
  • Gilbert, D. A., Grutter, A. J., Arenholz, E., Liu, K., Kirby, B. J., Borchers, J. A., & Maranville, B. B. (2016). Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nature Communications, 7, Article 12264. https://doi.org/10.1038/ncomms12264
  • Harumoto, T., Song, J., Lin, Y. H., & Shi, J. (2025). Nanometer-thick palladium–cobalt alloy films for hydrogen sensors and hydrogen-mediated devices. ACS Applied Nano Materials, 8(14), 7154–7162. https://doi.org/10.1021/acsanm.5c00392
  • Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G. S. D., Fullerton, E. E., Leighton, C., MacDonald, A. H., Ralph, D. C., Arena, D. A., Dürr, H. A., Fischer, P., Grollier, J., Heremans, J. P., Jungwirth, T., Kimel, A. V., Koopmans, B., Krivorotov, I. N., May, S. J., Petford-Long, A. K., … Zink, B. L. (2017). Interface-induced phenomena in magnetism. Reviews of Modern Physics, 89(2), Article 025006. https://doi.org/10.1103/RevModPhys.89.025006
  • Hsu, C.-C., Chang, P.-C., Chen, Y.-H., Liu, C.-M., Wu, C.-T., Yen, H.-W., & Lin, W.-C. (2018). Reversible 90-degree rotation of Fe magnetic moment using hydrogen. Scientific Reports, 8(1), Article 3251. https://doi.org/10.1038/s41598-018-21712-3
  • Klyukin, K., Beach, G., & Yildiz, B. (2020). Hydrogen tunes magnetic anisotropy by affecting local hybridization at the interface of a ferromagnet with nonmagnetic metals. Physical Review Materials, 4(10), Article 104416. https://doi.org/10.1103/PhysRevMaterials.4.104416
  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
  • Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558–561. https://doi.org/10.1103/PhysRevB.47.558
  • Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758
  • Lau, Y.-C., Chi, Z., Taniguchi, T., Kawaguchi, M., Shibata, G., Kawamura, N., Suzuki, M., Fukami, S., Fujimori, A., Ohno, H., & Hayashi, M. (2019). Giant perpendicular magnetic anisotropy in Ir/Co/Pt multilayers. Physical Review Materials, 3(10), Article 104419. https://doi.org/10.1103/PhysRevMaterials.3.104419
  • Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A. A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., & Suzuki, Y. (2009). Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 4(3), 158–161. https://doi.org/10.1038/nnano.2008.406
  • Munbodh, K., Perez, F. A., & Lederman, D. (2012). Changes in magnetic properties of Co/Pd multilayers induced by hydrogen absorption. Journal of Applied Physics, 111(12), Article 123919. http://dx.doi.org/10.1063/1.4729797
  • Okabayashi, J., Miura, Y., & Munekata, H. (2018). Anatomy of interfacial spin–orbit coupling in Co/Pd multilayers using x-ray magnetic circular dichroism and first-principles calculations. Scientific Reports, 8(1), Article 8303. https://doi.org/10.1038/s41598-018-26195-w
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), Article 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  • Sisman, O., Erkovan, M., & Kilinc, N. (2024). Chapter 5.1 – Hydrogen sensors for safety applications. In D. Jaiswal-Nagar, V. Dixit, & S. Devasahayam (Eds.), Towards Hydrogen Infrastructure: Advances and Challenges in Preparing for the Hydrogen Economy (pp. 275–314). Elsevier. https://doi.org/10.1016/B978-0-323-95553-9.00061-3
  • Soumyanarayanan, A., Raju, M., Gonzalez Oyarce, A. L., Tan, A. K. C., Im, M.-Y., Petrovic, A. P., Ho, P., Khoo, K. H., Tran, M., Gan, C. K., Ernult, F., & Panagopoulos, C. (2017). Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nature Materials, 16(9), 898–904. https://doi.org/10.1038/nmat4934
  • Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H., & Gong, X. G. (2011). Predicting the spin-lattice order of frustrated systems from first principles. Physical Review B, 84(22), Article 224429. https://doi.org/10.1103/PhysRevB.84.224429
  • Yang, H., Thiaville, A., Rohart, S., Fert, A., & Chshiev, M. (2015). Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Physical Review Letters, 115(26), Article 267210. https://doi.org/10.1103/PhysRevLett.115.267210
  • Zhang, S., Zhang, J., Zhang, Q., Barton, C., Neu, V., Zhao, Y., Hou, Z., Wen, Y., Gong, C., Kazakova, O., Wang, W., Peng, Y., Garanin, D. A., Chudnovsky, E. M., & Zhang, X. (2018). Direct writing of room-temperature and zero-field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters, 112(13), Article 132405. https://doi.org/10.1063/1.5021172
There are 32 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Articles
Authors

Caner Değer 0000-0002-8472-1651

Publication Date October 30, 2025
Submission Date May 22, 2025
Acceptance Date July 28, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Değer, C. (2025). Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface. Duzce University Journal of Science and Technology, 13(4), 1583-1591. https://doi.org/10.29130/dubited.1704212
AMA Değer C. Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface. DUBİTED. October 2025;13(4):1583-1591. doi:10.29130/dubited.1704212
Chicago Değer, Caner. “Hydrogen-Driven Perpendicular Magnetic Anisotropy at the Co Ir Interface”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1583-91. https://doi.org/10.29130/dubited.1704212.
EndNote Değer C (October 1, 2025) Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface. Duzce University Journal of Science and Technology 13 4 1583–1591.
IEEE C. Değer, “Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface”, DUBİTED, vol. 13, no. 4, pp. 1583–1591, 2025, doi: 10.29130/dubited.1704212.
ISNAD Değer, Caner. “Hydrogen-Driven Perpendicular Magnetic Anisotropy at the Co Ir Interface”. Duzce University Journal of Science and Technology 13/4 (October2025), 1583-1591. https://doi.org/10.29130/dubited.1704212.
JAMA Değer C. Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface. DUBİTED. 2025;13:1583–1591.
MLA Değer, Caner. “Hydrogen-Driven Perpendicular Magnetic Anisotropy at the Co Ir Interface”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1583-91, doi:10.29130/dubited.1704212.
Vancouver Değer C. Hydrogen-driven Perpendicular Magnetic Anisotropy at the Co/Ir Interface. DUBİTED. 2025;13(4):1583-91.