Research Article
BibTex RIS Cite

Otomotiv Endüstrisi Gereksinimlerine Göre Karboksilatlı Nanofibrile Selüloz/EPDM Kompozitlerinin Karakterizasyonu

Year 2025, Volume: 13 Issue: 4, 1629 - 1642, 30.10.2025
https://doi.org/10.29130/dubited.1708746

Abstract

Sürdürülebilir malzeme geliştirme, otomotiv endüstrisinde en çok araştırılan konulardan biridir. Otomotiv araçlarının vazgeçilmez bileşenleri olan sızdırmazlık profilleri, otomotiv üreticilerinin biyolojik olarak parçalanabilir malzemelerle değiştirmek için çalıştığı birçok petrol bazlı ürün içerir. Bu çalışmanın amacı, karboksile edilmiş nanofibrile selülozun (CNFC) etilen propilen dien monomer (EPDM) kauçuğunun mekanik, kimyasal, termal, morfolojik, reolojik ve deformasyon gibi bazı özelliklerinin değerlendirilmesi üzerine etkisini araştırmaktır. Çalışmada öncelikle CNFC, CNFC/EPDM yeşil kompozitleri geliştirmek için sentetik ve petrol bazlı EPDM yerine EPDM kauçuk bileşiğine 1, 3, 5 ve 10 (pphr) seviyelerinde eklenmiş olup reolojik sonuçlar, CNFC/EPDM yeşil kompozitlerinin otomotiv üreticilerinin mukavemet spesifikasyonlarına göre hala kabul edilebilir seviyede olduğunu göstermiştir. Bazı düşük mekanik özelliklere rağmen, 10 pphr'ye kadar CNFC ilavesi neticesinde, değerler otomotiv üreticilerinin spesifikasyonları dahilinde olduğu için EPDM için uygun bir alternatiftir. Ancak CNFC'nin 3 pphr'den fazla ilave edilmesi durumunda, iklimlendirme koşullarına dayanıklılık sonuçlarına göre CNFC/EPDM yeşil kompozitlerin ömrü üç yıl ile sınırlı kalmaktadır.

References

  • Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing, 43(4), 703-710. https://doi.org/10.1016/j.compositesa.2011.12.011
  • Ansari, F., Skrifvars, M., & Berglund, L. (2015). Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology, 117, 298-306. https://doi.org/10.1016/j.compscitech.2015.07.004
  • Arayapranee, W. & Rempel, G. L. (2008). A comparative study of the cure characteristics, processibility, mechanical properties, ageing, and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends. Journal of Applied Polymer Science, 109(2), 932-941. https://doi.org/10.1002/app.28111
  • Arroyo, M., López-Manchado, A. M., & Herrero, B. (2003). Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44(8), 2447-2453. https://doi.org/10.1016/S0032-3861(03)00090-9
  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., & Wågberg, L. (2009). Nanoscale cellulose films with different crystallinities and mesostructures: Their surface properties and interaction with water. Langmuir, 25(13), 7675-7685. https://doi.org/10.1021/la900323n
  • Cheng, D., Wen, Y., An, X., Zhu, X., & Ni, Y. (2016). TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 151, 326-334. https://doi.org/10.1016/j.carbpol.2016.05.083
  • Choi, S. S., Nah, C., Lee, S. G., & Joo, C. W. (2003). Effect of filler-filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polymer International, 52(1), 23-28. https://doi.org/10.1002/pi.975
  • Clarkson, C. M., & Youngblood, J. P. (2018). Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Materials, 6(1), 6-14. https://doi.org/10.1680/jgrma.17.00027
  • Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet, C., & Lemaire, J. (2000). Photo-, thermal and natural ageing of ethylene-propylene-diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polymer Degradation and Stability, 67(3), 469-477. https://doi.org/10.1016/S0141-3910(99)00147-0
  • Dikmen Kucuk, S., Tozluoglu, A., & Guner, Y. (2020). The potential of TEMPO-oxidized cellulose nanofibers to replace ethylene-propylene-diene monomer rubber. International Journal of Energy and Environmental Engineering, 14(3), 97-102.
  • Dikmen Kucuk, S., Tozluoglu, A., Guner, Y., Arslan, R., & Sertkaya, S. (2022). Mechanical, rheological and aging properties of nano-fibrillated cellulose/EPDM composites. Artvin Coruh University Journal of Forestry Faculty, 23(1), 11-22. https://doi.org/10.17474/artvinofd.934238
  • Feldman, D. (2002). Polymer weathering: Photo-oxidation. Journal of Polymers and the Environment, 10(4), 163-173. https://doi.org/10.1023/A:1021148205366
  • Freise, C. K. (2002). Handbuch der Karosseriedichtungen. Wolfsburg, Germany: Volkswagen AG. George, K., Biswal, M., Mohanty, S., Nayak, S. K., & Panda, P. (2021). Nanosilica filled EPDM/Kevlar fiber hybrid nanocomposites: Mechanical and thermal properties. Materials Today Proceedings, 41(5), 983-986. https://doi.org/10.1016/j.matpr.2020.02.817
  • Ginic-Markovic, M., Choudhurry, N. R., Dimopoulos, M., & Matisons, J. G. (2000). Weatherability of coated EPDM rubber compound by controlled UV irradiation. Polymer Degradation and Stability, 69(2), 157-168. https://doi.org/10.1016/S0141-3910(00)00053-7
  • Hua, K., Rocha, I., Zhang, P., Gustafsson, S., Ning, Y., Strømme, M., Mihranyan, A. & Ferraz, N. (2016). Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose. Biomacromolecules, 17(3), 1224-1233. https://doi.org/10.1021/acs.biomac.6b00053
  • Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929-980.
  • John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040
  • Keeney, J. D., & Mayfield, C. C. (2002). Automotive vehicle seal and decorative trim strip (U.S. Patent No. 6,422,571). United States Patent and Trademark Office. https://patents.google.com/patent/US6422571
  • Kim, U. J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488-492. https://doi.org/10.1021/bm0000337
  • Kucuk, S. D., Gerengi, H., & Guner, Y. (2018). The effect of Tinuvin derivatives as an ultraviolet (UV) stabilizer on EPDM rubber. Periodicals of Engineering and Natural Sciences, 6(1), 52-62.
  • Kumar, B., Rana, S., & Singh, R. P. (2007). Photo-oxidation of EPDM/layered double hydroxides composites: Influence of layered hydroxides and stabilizers. Express Polymer Letters, 1(11), 748-754. https://doi.org/10.3144/expresspolymlett.2007.103
  • Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A., & Eceiza, A. (2020). The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polymer Degradation and Stability, 173, Article 109084. https://doi.org/10.1016/j.polymdegradstab.2020.109084
  • Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955-963. https://doi.org/10.1016/j.carbpol.2015.10.008
  • Lin, N., Bruzzese, C., & Dufresne, A. (2012). TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Applied Materials & Interfaces, 4(9), 4948-4959. https://doi.org/10.1021/am301325r
  • Mat, N. S. C., Ismail, H., & Othman, N. (2016). Curing characteristics and tear properties of bentonite filled ethylene propylene diene (EPDM) rubber composites. Procedia Chemistry, 19, 394-400. https://doi.org/10.1016/j.proche.2016.03.029
  • Menezes, A. J., Siqueira, G., Curvelo, A. A. S., & Dufresne, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50(19), 4552-4563. https://doi.org/10.1016/j.polymer.2009.07.038
  • Miao, C., & Hamad, W. Y. (2016). Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer, 101, 338-346. https://doi.org/10.1016/j.polymer.2016.08.099
  • Morlat-Therias, S., Fanton, E., Tomer, N. S., Rana, S., Singh, R. P., & Gardette, J. L. (2006). Photooxidation of vulcanized EPDM/montmorillonite nanocomposites. Polymer Degradation and Stability, 91(2), 3033-3039. https://doi.org/10.1016/j.polymdegradstab.2006.08.026
  • Nafeesa, M. S., & Azura, A. R. (2018). The influence of different types of rubber on curing behaviour and dynamic properties of rubber compound. Journal of Physics: Conference Series, 1082(1), Article 012010. https://doi.org/10.1088/1742-6596/1082/1/012010
  • Nair, S. S., Kuo, P. Y., Chen, H., & Yan, N. (2017). Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products, 100, 208-217. https://doi.org/10.1016/j.indcrop.2017.02.032
  • Poyraz, B., Güner, Y., Yardım, T., Yamanoğlu, R., Tozluoğlu, A., Durmuş, S., & Şen, M. (2022). Influence of microcrystalline cellulose on EPDM-based automotive sealing profile. Journal of Elastomers & Plastics, 55(1), 28-45. https://doi.org/10.1177/00952443221138915
  • Sarkhel, G., & Choudhury, A. (2008). Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. Journal of Applied Polymer Science, 108(6), 3442-3453. https://doi.org/10.1002/app.28024
  • Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., & Yano, H. (2007). Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules, 8(9), 2976-2978. https://doi.org/10.1021/bm7004998
  • Siriwerdana, S., Ismail, H., & Ishiaku, U. S. (2001). A comparison of white rice husk ash and silica as fillers in ethylene-propylene-diene terpolymer vulcanizates. Polymer International, 50(6), 707-713. https://doi.org/10.1002/pi.691
  • Snijders, E. A., Boersma, A., Baarle, B., & Noordermeer, J. (2005). Effect of third monomer type and content on the UV stability of EPDM. Polymer Degradation and Stability, 89(2), 200-207. https://doi.org/10.1016/j.polymdegradstab.2004.12.003
  • Thomas, D., & Shaw, P. A. (1991). The Kalahari environment. Cambridge University Press. Wang, J., Wu, W., Wang, W., & Zhang, J. (2011). Preparation and characterization of hemp hurd power filled SBR and EPDM elastomers. Journal of Polymer Research, 18(5), 1023-1032. https://doi.org/10.1007/s10965-010-9503-4
  • Xu, G., Yan, G., & Zhang, J. (2015). Lignin as coupling agent in EPDM rubber: Thermal and mechanical properties. Polymer Bulletin, 72, 2389-2398. https://doi.org/10.1007/s00289-015-1411-7

Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles

Year 2025, Volume: 13 Issue: 4, 1629 - 1642, 30.10.2025
https://doi.org/10.29130/dubited.1708746

Abstract

Sustainable material development is one of the most researched topics in the automotive industry. Sealing profiles, which are indispensable components of automotive vehicles, contain many petroleum-based products which automotive manufacturers are working to replace with biodegradable materials. The aim of this study is to investigate the effect of carboxylated nanofibrillated cellulose (CNFC) on the ethylene propylene diene monomer (EPDM) rubber in terms of evaluation some properties such as mechanical, chemical, thermal, morphological, rheological, and deformation. The CNFC was added at levels of 1, 3, 5, and 10 parts per hundred parts of rubber (pphr) to the EPDM rubber compound instead of synthetic and petroleum-based EPDM to develop CNFC/EPDM green composites. The rheological results showed that the CNFC/EPDM green composites were still acceptable according to the strength specifications of automotive manufacturers. Despite some lower mechanical properties, CNFC addition up to 10 pphr was still a suitable replacement for EPDM because the values were within specifications of automotive manufacturers. However, when the CNFC was added at more than 3 pphr, the lifespan of the CNFC/EPDM green composites was limited to three years according to the weathering results.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited

Thanks

This study was carried out using the technical infrastructure of the company Standard Profil. I would like to thank Standard Profil for opening its R&D laboratory and production line to me for this study.

References

  • Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing, 43(4), 703-710. https://doi.org/10.1016/j.compositesa.2011.12.011
  • Ansari, F., Skrifvars, M., & Berglund, L. (2015). Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology, 117, 298-306. https://doi.org/10.1016/j.compscitech.2015.07.004
  • Arayapranee, W. & Rempel, G. L. (2008). A comparative study of the cure characteristics, processibility, mechanical properties, ageing, and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends. Journal of Applied Polymer Science, 109(2), 932-941. https://doi.org/10.1002/app.28111
  • Arroyo, M., López-Manchado, A. M., & Herrero, B. (2003). Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44(8), 2447-2453. https://doi.org/10.1016/S0032-3861(03)00090-9
  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., & Wågberg, L. (2009). Nanoscale cellulose films with different crystallinities and mesostructures: Their surface properties and interaction with water. Langmuir, 25(13), 7675-7685. https://doi.org/10.1021/la900323n
  • Cheng, D., Wen, Y., An, X., Zhu, X., & Ni, Y. (2016). TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 151, 326-334. https://doi.org/10.1016/j.carbpol.2016.05.083
  • Choi, S. S., Nah, C., Lee, S. G., & Joo, C. W. (2003). Effect of filler-filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polymer International, 52(1), 23-28. https://doi.org/10.1002/pi.975
  • Clarkson, C. M., & Youngblood, J. P. (2018). Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Materials, 6(1), 6-14. https://doi.org/10.1680/jgrma.17.00027
  • Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet, C., & Lemaire, J. (2000). Photo-, thermal and natural ageing of ethylene-propylene-diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polymer Degradation and Stability, 67(3), 469-477. https://doi.org/10.1016/S0141-3910(99)00147-0
  • Dikmen Kucuk, S., Tozluoglu, A., & Guner, Y. (2020). The potential of TEMPO-oxidized cellulose nanofibers to replace ethylene-propylene-diene monomer rubber. International Journal of Energy and Environmental Engineering, 14(3), 97-102.
  • Dikmen Kucuk, S., Tozluoglu, A., Guner, Y., Arslan, R., & Sertkaya, S. (2022). Mechanical, rheological and aging properties of nano-fibrillated cellulose/EPDM composites. Artvin Coruh University Journal of Forestry Faculty, 23(1), 11-22. https://doi.org/10.17474/artvinofd.934238
  • Feldman, D. (2002). Polymer weathering: Photo-oxidation. Journal of Polymers and the Environment, 10(4), 163-173. https://doi.org/10.1023/A:1021148205366
  • Freise, C. K. (2002). Handbuch der Karosseriedichtungen. Wolfsburg, Germany: Volkswagen AG. George, K., Biswal, M., Mohanty, S., Nayak, S. K., & Panda, P. (2021). Nanosilica filled EPDM/Kevlar fiber hybrid nanocomposites: Mechanical and thermal properties. Materials Today Proceedings, 41(5), 983-986. https://doi.org/10.1016/j.matpr.2020.02.817
  • Ginic-Markovic, M., Choudhurry, N. R., Dimopoulos, M., & Matisons, J. G. (2000). Weatherability of coated EPDM rubber compound by controlled UV irradiation. Polymer Degradation and Stability, 69(2), 157-168. https://doi.org/10.1016/S0141-3910(00)00053-7
  • Hua, K., Rocha, I., Zhang, P., Gustafsson, S., Ning, Y., Strømme, M., Mihranyan, A. & Ferraz, N. (2016). Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose. Biomacromolecules, 17(3), 1224-1233. https://doi.org/10.1021/acs.biomac.6b00053
  • Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929-980.
  • John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040
  • Keeney, J. D., & Mayfield, C. C. (2002). Automotive vehicle seal and decorative trim strip (U.S. Patent No. 6,422,571). United States Patent and Trademark Office. https://patents.google.com/patent/US6422571
  • Kim, U. J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488-492. https://doi.org/10.1021/bm0000337
  • Kucuk, S. D., Gerengi, H., & Guner, Y. (2018). The effect of Tinuvin derivatives as an ultraviolet (UV) stabilizer on EPDM rubber. Periodicals of Engineering and Natural Sciences, 6(1), 52-62.
  • Kumar, B., Rana, S., & Singh, R. P. (2007). Photo-oxidation of EPDM/layered double hydroxides composites: Influence of layered hydroxides and stabilizers. Express Polymer Letters, 1(11), 748-754. https://doi.org/10.3144/expresspolymlett.2007.103
  • Larraza, I., Vadillo, J., Santamaria-Echart, A., Tejado, A., Azpeitia, M., Vesga, E., Orue, A., Saralegi, A., Arbelaiz, A., & Eceiza, A. (2020). The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties. Polymer Degradation and Stability, 173, Article 109084. https://doi.org/10.1016/j.polymdegradstab.2020.109084
  • Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955-963. https://doi.org/10.1016/j.carbpol.2015.10.008
  • Lin, N., Bruzzese, C., & Dufresne, A. (2012). TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Applied Materials & Interfaces, 4(9), 4948-4959. https://doi.org/10.1021/am301325r
  • Mat, N. S. C., Ismail, H., & Othman, N. (2016). Curing characteristics and tear properties of bentonite filled ethylene propylene diene (EPDM) rubber composites. Procedia Chemistry, 19, 394-400. https://doi.org/10.1016/j.proche.2016.03.029
  • Menezes, A. J., Siqueira, G., Curvelo, A. A. S., & Dufresne, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50(19), 4552-4563. https://doi.org/10.1016/j.polymer.2009.07.038
  • Miao, C., & Hamad, W. Y. (2016). Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer, 101, 338-346. https://doi.org/10.1016/j.polymer.2016.08.099
  • Morlat-Therias, S., Fanton, E., Tomer, N. S., Rana, S., Singh, R. P., & Gardette, J. L. (2006). Photooxidation of vulcanized EPDM/montmorillonite nanocomposites. Polymer Degradation and Stability, 91(2), 3033-3039. https://doi.org/10.1016/j.polymdegradstab.2006.08.026
  • Nafeesa, M. S., & Azura, A. R. (2018). The influence of different types of rubber on curing behaviour and dynamic properties of rubber compound. Journal of Physics: Conference Series, 1082(1), Article 012010. https://doi.org/10.1088/1742-6596/1082/1/012010
  • Nair, S. S., Kuo, P. Y., Chen, H., & Yan, N. (2017). Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products, 100, 208-217. https://doi.org/10.1016/j.indcrop.2017.02.032
  • Poyraz, B., Güner, Y., Yardım, T., Yamanoğlu, R., Tozluoğlu, A., Durmuş, S., & Şen, M. (2022). Influence of microcrystalline cellulose on EPDM-based automotive sealing profile. Journal of Elastomers & Plastics, 55(1), 28-45. https://doi.org/10.1177/00952443221138915
  • Sarkhel, G., & Choudhury, A. (2008). Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. Journal of Applied Polymer Science, 108(6), 3442-3453. https://doi.org/10.1002/app.28024
  • Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., & Yano, H. (2007). Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules, 8(9), 2976-2978. https://doi.org/10.1021/bm7004998
  • Siriwerdana, S., Ismail, H., & Ishiaku, U. S. (2001). A comparison of white rice husk ash and silica as fillers in ethylene-propylene-diene terpolymer vulcanizates. Polymer International, 50(6), 707-713. https://doi.org/10.1002/pi.691
  • Snijders, E. A., Boersma, A., Baarle, B., & Noordermeer, J. (2005). Effect of third monomer type and content on the UV stability of EPDM. Polymer Degradation and Stability, 89(2), 200-207. https://doi.org/10.1016/j.polymdegradstab.2004.12.003
  • Thomas, D., & Shaw, P. A. (1991). The Kalahari environment. Cambridge University Press. Wang, J., Wu, W., Wang, W., & Zhang, J. (2011). Preparation and characterization of hemp hurd power filled SBR and EPDM elastomers. Journal of Polymer Research, 18(5), 1023-1032. https://doi.org/10.1007/s10965-010-9503-4
  • Xu, G., Yan, G., & Zhang, J. (2015). Lignin as coupling agent in EPDM rubber: Thermal and mechanical properties. Polymer Bulletin, 72, 2389-2398. https://doi.org/10.1007/s00289-015-1411-7
There are 37 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Material Design and Behaviors
Journal Section Articles
Authors

Sibel Dikmen Küçük 0000-0002-7852-5128

Publication Date October 30, 2025
Submission Date May 29, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Dikmen Küçük, S. (2025). Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles. Duzce University Journal of Science and Technology, 13(4), 1629-1642. https://doi.org/10.29130/dubited.1708746
AMA Dikmen Küçük S. Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles. DUBİTED. October 2025;13(4):1629-1642. doi:10.29130/dubited.1708746
Chicago Dikmen Küçük, Sibel. “Biodegradable CNFC EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1629-42. https://doi.org/10.29130/dubited.1708746.
EndNote Dikmen Küçük S (October 1, 2025) Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles. Duzce University Journal of Science and Technology 13 4 1629–1642.
IEEE S. Dikmen Küçük, “Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles”, DUBİTED, vol. 13, no. 4, pp. 1629–1642, 2025, doi: 10.29130/dubited.1708746.
ISNAD Dikmen Küçük, Sibel. “Biodegradable CNFC EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles”. Duzce University Journal of Science and Technology 13/4 (October2025), 1629-1642. https://doi.org/10.29130/dubited.1708746.
JAMA Dikmen Küçük S. Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles. DUBİTED. 2025;13:1629–1642.
MLA Dikmen Küçük, Sibel. “Biodegradable CNFC EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1629-42, doi:10.29130/dubited.1708746.
Vancouver Dikmen Küçük S. Biodegradable CNFC/EPDM Green Composites: A Sustainable Alternative for Automotive Sealing Profiles. DUBİTED. 2025;13(4):1629-42.