Research Article
BibTex RIS Cite

3D FDM teknolojisi ile üretilen PC/ABS kompozit parçaların kriyojenik işlemle mekanik ve tribolojik özelliklerinin iyileştirilmesi

Year 2025, Volume: 13 Issue: 4, 1782 - 1798, 30.10.2025
https://doi.org/10.29130/dubited.1733839

Abstract

Bu makalede, 3D FDM baskı teknolojisinde kullanılan PC/ABS kompozit malzemeden üretilen ürünlerin mekanik ve tribolojik özellikleri üzerinde kriyojenik işlemin etkileri araştırılmıştır. İlgili standartlara uygun olarak sertlik, çekme dayanımı, darbe dayanımı ve sürtünme katsayısı için üç farklı yük test numunesi üretilmiştir. Oda sıcaklığında üretilen deney numunelerinin hepsinin üretim parametreleri sabit tutularak daha sonra yapılan kriyojenik işleme odaklanılmıştır. Bu numunelere farklı bekletme zamanlarında ve -180℃’de sıvı azot ile kriyojenik işlem uygulanmıştır. Kriyojenik işlemin etkilerini görmek için mekanik özellik deneyleri yapılmış ayrıca Tarama Elektron Mikroskobu (SEM) ile çekme deneyinde kopan yüzeylerden görüntüler alınıp mikroyapı incelenmiştir. Bu çalışmanın sınırları dahilinde kriyojenik işlem PC/ABS kompozit malzemelerden üretilen ürünlerin hepsinin işlem görmemiş olanlara göre sertlik değerleri artmıştır. En yüksek sertlik artışı % 22,37 artarak 24 CT kodlu PC/ABS numunelerde olmuştur. Tüm numunelerin çekme dayanımı değerlerinde işlem görmemiş numunelere göre artış görülmüştür. Ancak çekme dayanımı değerlerinde en yüksek artış %8,35 ile 18 CT kodlu numunelerde olmuştur. Tüm numunelerde darbe dayanımında azalma görülmüştür. Ancak 18 CT kodlu numuneler %33,38 oranıyla en yüksek düşüşü göstermiştir. Üç farklı yük altında (5 N, 10 N ve 20 N) yapılan aşınma testlerinde tüm numunelerin sürtünme katsayılarında işlem görmemiş numunelere göre iyileşme görülmüştür. Malzemenin mikro yapı (SEM) görüntüleri karşılaştırıldığında matris yapısında farklılıklar olduğu görülmüştür. İşlem sonucu sertlik değerlerinde meydana gelen artış, numunelerin mikro yapısındaki moleküler zincir dizilimin daha düzenli hale gelerek kararlı bir yapıya dönüşmesi olarak açıklanmıştır. Bu yapısal değişimlerin PC/ABS kompozit malzemelerin mekanik özellikleri üzerinde olumlu etki yarattığı değerlendirilmiştir.

Ethical Statement

Etik ihlalı yapılmamıştır.

Supporting Institution

Destek almamıştır.

References

  • Altinsoy, A., & Arslan, Y. (2024). Investigation of the effects of deep cryogenic treatment on the structural and mechanic properties of polyoxymethylene copolymer (POM-C) materials. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(6), 2623-2632. https://doi.org/10.1177/09544089221139647
  • Amza, C. G., Zapciu, A., Baciu, F., & Radu, C. (2023). Effect of UV-C radiation on 3D printed ABS-PC polymers. Polymers, 15(8), Article 1966. https://doi.org/10.3390/polym15081966
  • Arslan, Y. (2020a). The effects of cryogenic process on the AISI M2 punch materials and on the hole edge geometry of the DIN EN 10111‐98 sheet metal control arm parts. Advances in Materials Science and Engineering, 2020(1), Article 9236783. https://doi.org/10.1155/2020/9236783
  • Arslan, Y. (2020b). The effect of cryogenic treatment on the punch wear and the hole edge geometry. Transactions of FAMENA, 44(2), 45-57. https://doi.org/10.21278/TOF.44205
  • Arslan, Y., Seker, U., Ozcatalbas, Y., & Ozdemir, A. (2016). An investigation of the hole diameter and circularity on the stainless steel sheet perforated via by deep cryogenically treated cold work tool steel punches. Journal of Engineering Research and Applied Science, 5(1), 378-390.
  • Bakar, A. A. B. A., Zainuddin, M. Z. B., Adam, A. N. B., Noor, I. S. B. M., Tamchek, N. B., Alauddin, M. S. B., & Ghazali, M. I. B. M. (2022). The study of mechanical properties of poly (lactic) acid PLA-based 3D printed filament under temperature and environmental conditions. Materials Today: Proceedings, 67, 652-658. https://doi.org/10.1016/j.matpr.2022.06.198
  • Bartolomé, E., Bozzo, B., Sevilla, P., Martínez-Pasarell, O., Puig, T., & Granados, X. (2017). ABS 3D printed solutions for cryogenic applications. Cryogenics, 82, 30-37. https://doi.org/10.1016/j.cryogenics.2017.01.005
  • Bermudo Gamboa, C., Martín-Béjar, S., Bañón García, F., & Sevilla Hurtado, L. (2024). Enhancing Fatigue Resistance of Polylactic Acid through Natural Reinforcement in Material Extrusion. Polymers, 16(17), Article 2422. https://doi.org/10.3390/polym16172422
  • Bourell, D., Kruth, J. P., Leu, M., Levy, G., Rosen, D., Beese, A. M., & Clare, A. (2017). Materials for additive manufacturing. CIRP Annals, 66(2), 659-681. https://doi.org/10.1016/j.cirp.2017.05.009
  • Chopra, S., Deshmukh, K. A., Somvanshi, M. V., Patil, N. V., Rakhe, S. R., Sontakke, R. V., ... & Carlone, P. (2021). Structural elucidation and mechanical behavior of cryogenically treated ultra-high molecular weight poly-ethylene (UHMWPE). Transactions of the Indian Institute of Metals, 74(2), 255-265. https://doi.org/10.1007/s12666-020-02140-2
  • Cruz, P., Shoemake, E. D., Adam, P., & Leachman, J. (2015, November). Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen. In IOP Conference Series: Materials Science and Engineering (Vol. 102, No. 1, p. 012020). IOP Publishing. doi:10.1088/1757-899X/102/1/012020
  • Çiçek, A., Kıvak, T., Uygur, I., Ekici, E., & Turgut, Y. (2012). Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 60(1), 65-73. https://doi.org/10.1007/s00170-011-3616-8
  • Das, D., Dutta, A. K., & Ray, K. K. (2009). Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear, 266(1-2), 297-309. https://doi.org/10.1016/j.wear.2008.07.001
  • Dey, A., & Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3), Article 64. https://doi.org/10.3390/jmmp3030064
  • Dizon, J. R. C., Espera Jr, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive manufacturing, 20, 44-67. https://doi.org/10.1016/j.addma.2017.12.002
  • Engler, L. G., Crespo, J. S., Gately, N. M., Major, I., & Devine, D. M. (2022). Process optimization for the 3D printing of PLA and HNT composites with Arburg plastic freeforming. Journal of Composites Science, 6(10), Article 309. https://doi.org/10.3390/jcs6100309
  • Evlen, H., Özdemir, M. A., & Çalışkan, A. (2019). Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri. Politeknik Dergisi, 22(4), 1031-1037. [in Turkish]. https://doi.org/10.2339/politeknik.426413
  • Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., & Arias, A. (2020). Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Materials & Design, 188, Article 108414. https://doi.org/10.1016/j.matdes.2019.108414
  • Gaweł, A., Kuciel, S., Liber-Kneć, A., & Mierzwiński, D. (2023). Examination of low-cyclic fatigue tests and poisson’s ratio depending on the different infill density of polylactide (PLA) produced by the fused deposition modeling method. Polymers, 15(7), Article 1651. https://doi.org/10.3390/polym15071651
  • Gebel, M. E., & Ermurat, M. (2021). Investigation of polymer matrix continuous fiber reinforced composite part manufacturability for composite additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(1), 57-67. [in Turkish]. https://doi.org/10.17341/gazimmfd.606618
  • Gupta, A., Kumar, N., Sachdeva, A., Sharma, G. K., Kumar, M., & Verma, R. (2025). Effect of cryogenic treatment on the mechanical properties of 3D-printed polylactic acid part. Cryogenics, 145, Article 104000. https://doi.org/10.1016/j.cryogenics.2024.104000
  • Horasan, M., & Sarac, I. (2024). The fatigue responses of 3D‐printed polylactic acid (PLA) parts with varying raster angles and printing speeds. Fatigue & Fracture of Engineering Materials & Structures, 47(10), 3693-3706. https://doi.org/10.1111/ffe.14406
  • Jayswal, A., & Adanur, S. (2022). Effect of heat treatment on crystallinity and mechanical properties of flexible structures 3D printed with fused deposition modeling. Journal of Industrial Textiles, 51(2S), 2616S-2641S. https://doi.org/10.1177/15280837211064937
  • Kannan, S., & Ramamoorthy, M. (2020). Mechanical characterization and experimental modal analysis of 3D printed ABS, PC and PC-ABS materials. Materials Research Express, 7(1), Article 015341. https://doi.org/10.1088/2053-1591/ab6a48
  • Karabıyık, Ö., & Apak, K. (2021). Eklemeli imalat yöntemiyle PLA malzemesinden üretilen ürünlerin mekanik özelliklerinin incelenmesi. Uluslararası Teknolojik Bilimler Dergisi, 13(2), 62-68. [in Turkish].
  • Karakoc, B., & Uzun, G. (2023). Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi. Politeknik Dergisi, 27(4), 1233-1242. [in Turkish]. https://doi.org/10.2339/politeknik.1262855
  • Koçar, O., Anaç, N., Baysal, E., Parmaksız, F., & Akgül, İ. (2024). Investigation of mechanical properties and color changes of 3D-printed parts with different infill ratios and colors after aging. Materials, 17(23), Article 5908. https://doi.org/10.3390/ma17235908
  • Konta, A. A., García-Piña, M., & Serrano, D. R. (2017). Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering, 4(4), Article 79. https://doi.org/10.3390/bioengineering4040079
  • Liu, Y., Dong, J., Tiersch, T. R., Wu, Q., & Monroe, W. T. (2022). An open hardware 3-D printed device for measuring tensile properties of thermoplastic filament polymers at cryogenic temperatures. Cryogenics, 121, Article 103409. https://doi.org/10.1016/j.cryogenics.2021.103409
  • Moghanizadeh, A., & Ashrafizadeh, F. (2021). Studying sacrificial ice structure, as soluble support layers, in 3D printing of polymers (FDM). Progress in Additive Manufacturing, 6(4), 757-763. https://doi.org/10.1007/s40964-021-00195-1
  • Ni, H., Zhuo, L., Gu, H., Lv, S., Zhu, Y., Shi, C., & Wang, X. (2018). Effect of cryogenic treatment on micro-structure and properties of different polymer materials. In MATEC Web of Conferences (Vol. 166, p. 01002). EDP Sciences. https://doi.org/10.1051/matecconf/201816601002
  • Pande, K. N., Peshwe, D. R., & Kumar, A. (2012). Effect of the cryogenic treatment on polyamide and optimization of its parameters for the enhancement of wear performance. Transactions of the Indian Institute of Metals, 65(3), 313-319. https://doi.org/10.1007/s12666-012-0135-8
  • Pandelidi, C., Bateman, S., Piegert, S., Hoehner, R., Kelbassa, I., & Brandt, M. (2021). The technology of continuous fibre-reinforced polymers: a review on extrusion additive manufacturing methods. The International Journal of Advanced Manufacturing Technology, 113(11), 3057-3077. https://doi.org/10.1007/s00170-021-06837-6
  • Podgornik, B., Leskovšek, V., & Vižintin, J. (2009). Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Materials and Manufacturing Processes, 24(7-8), 734-738. https://doi.org/10.1080/10426910902809339
  • Rouf, S., Raina, A., Haq, M. I. U., Naveed, N., Jeganmohan, S., & Kichloo, A. F. (2022). 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158. https://doi.org/10.1016/j.aiepr.2022.02.001
  • Salifu, S., Ogunbiyi, O., & Olubambi, P. A. (2022). Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites. The International Journal of Advanced Manufacturing Technology, 122(2), 577-600. https://doi.org/10.1007/s00170-022-09976-6
  • Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. (2020). A review on 3D printed matrix polymer composites: its potential and future challenges. The international journal of advanced manufacturing technology, 106(5), 1695-1721. https://doi.org/10.1007/s00170-019-04534-z
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Sözen, A., & Neşer, G. (2022). Eklemeli imalat yöntemiyle tekne inşaatında dolgu yoğunluğu ve örüntüsünün mukavemet üzerindeki bileşik etkisi. Gemi ve Deniz Teknolojisi, 221, 163-177. [in Turkish]. https://doi.org/10.54926/gdt.1117813
  • Stan, F., Stanciu, N. V., Sandu, I. L., Fetecau, C., & Serban, A. (2019). Effect of low and extreme-low temperature on mechanical properties of 3D printed polyethylene terephthalate glycol copolymer. The Romanian Journal of Technical Sciences. Applied Mechanics, 64(1), 21-41.
  • Valino, A. D., Dizon, J. R. C., Espera Jr, A. H., Chen, Q., Messman, J., & Advincula, R. C. (2019). Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, Article 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
  • Veer, P., Vettivel, S. C., Madan, J., & Pabla, B. S. (2023). Mechanical and tribological characterization of 3D printed-cryogenically treated thermoplastic polyurethane. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.09.050
  • Wang, Q., Zheng, F., & Wang, T. (2016). Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics, 75, 19-25. https://doi.org/10.1016/j.cryogenics.2016.01.001
  • Weiss, K. P., Bagrets, N., Lange, C., Goldacker, W., & Wohlgemuth, J. (2015, November). Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. In IOP Conference Series: Materials Science and Engineering (Vol. 102, No. 1, p. 012022). IOP Publishing. doi:10.1088/1757-899X/102/1/012022
  • Yap, P. V., Chan, M. Y., & Koay, S. C. (2021). Preliminary study on mechanical properties of 3D printed multi-materials ABS/PC parts: Effect of printing parameters. Journal of Physical Science, 32(2), 87-104. https://doi.org/10.21315/jps2021.32.2.7
  • Yap, Y. L., Toh, W., Koneru, R., Lin, K., Yeoh, K. M., Lim, C. M., Lee, J. S., Plemping, N. A., Lin, R., Ng, T. Y., Chan, K. I., Guang, H., Chan, W. Y. B., Teong, S. S., & Zheng, G. (2019). A non-destructive experimental-cum-numerical methodology for the characterization of 3D-printed materials—polycarbonate-acrylonitrile butadiene styrene (PC-ABS). Mechanics of Materials, 132, 121-133. https://doi.org/10.1016/j.mechmat.2019.03.005
  • Yılmaz, M., Yılmaz, N. F., Kılıç, A., & Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 859-867. [in Turkish]. https://doi.org/10.17341/gazimmfd.1213974
  • Zerankeshi, M. M., Bakhshi, R., & Alizadeh, R. (2022). Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting, 25, Article e00191. https://doi.org/10.1016/j.bprint.2022.e00191

Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment

Year 2025, Volume: 13 Issue: 4, 1782 - 1798, 30.10.2025
https://doi.org/10.29130/dubited.1733839

Abstract

In this article, the effects of cryogenic treatment on mechanical and tribological properties of products made of PC/ABS composite material used in 3D FDM printing technology were investigated. Three different load test samples were produced for hardness, tensile strength, impact strength and friction coefficient in accordance with the relevant st andards. The production parameters of all the experimental samples produced at room temperature were kept constant and the subsequent cryogenic treatment was focused on. These samples were subjected to cryogenic treatment with liquid nitrogen at different holding times and -180℃. In order to see the effects of cryogenic treatment, mechanical property tests were carried out and also images were taken from the surfaces that were broken in the tensile test with Scanning Electron Microscope (SEM) and the microstructure was examined. Within the limits of this study, the hardness values of all products produced from cryogenically treated PC/ABS composite materials increased compared to those that were not treated. The highest hardness increase was in the 24 CT coded PC/ABS samples with an increase of 22.37%. An increase was observed in the tensile strength values of all samples compared to the untreated samples. However, the highest increase in tensile strength values was in the 18 CT coded samples with an increase of 8.35%. A decrease in impact strength was observed in all samples. However, samples with code 18 CT showed the highest decrease with a rate of 33.38%. In the wear tests performed under three different loads (5 N, 10 N and 20 N), an improvement was observed in the friction coefficients of all samples compared to untreated samples. When the microstructure (SEM) images of the material were compared, it was seen that there were differences in the matrix structure. The increase in the hardness values as a result of the process was explained as the molecular chain arrangement in the microstructure of the samples becoming more regular and turning into a stable structure. It was evaluated that these structural changes had a positive effect on the mechanical properties of PC/ABS composite materials. This research constitutes a pioneering study reporting the tribological and mechanical performance of parts manufactured from PC/ABS composites, a preferred material in 3D FDM printing technology, under cryogenic conditions.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited

References

  • Altinsoy, A., & Arslan, Y. (2024). Investigation of the effects of deep cryogenic treatment on the structural and mechanic properties of polyoxymethylene copolymer (POM-C) materials. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(6), 2623-2632. https://doi.org/10.1177/09544089221139647
  • Amza, C. G., Zapciu, A., Baciu, F., & Radu, C. (2023). Effect of UV-C radiation on 3D printed ABS-PC polymers. Polymers, 15(8), Article 1966. https://doi.org/10.3390/polym15081966
  • Arslan, Y. (2020a). The effects of cryogenic process on the AISI M2 punch materials and on the hole edge geometry of the DIN EN 10111‐98 sheet metal control arm parts. Advances in Materials Science and Engineering, 2020(1), Article 9236783. https://doi.org/10.1155/2020/9236783
  • Arslan, Y. (2020b). The effect of cryogenic treatment on the punch wear and the hole edge geometry. Transactions of FAMENA, 44(2), 45-57. https://doi.org/10.21278/TOF.44205
  • Arslan, Y., Seker, U., Ozcatalbas, Y., & Ozdemir, A. (2016). An investigation of the hole diameter and circularity on the stainless steel sheet perforated via by deep cryogenically treated cold work tool steel punches. Journal of Engineering Research and Applied Science, 5(1), 378-390.
  • Bakar, A. A. B. A., Zainuddin, M. Z. B., Adam, A. N. B., Noor, I. S. B. M., Tamchek, N. B., Alauddin, M. S. B., & Ghazali, M. I. B. M. (2022). The study of mechanical properties of poly (lactic) acid PLA-based 3D printed filament under temperature and environmental conditions. Materials Today: Proceedings, 67, 652-658. https://doi.org/10.1016/j.matpr.2022.06.198
  • Bartolomé, E., Bozzo, B., Sevilla, P., Martínez-Pasarell, O., Puig, T., & Granados, X. (2017). ABS 3D printed solutions for cryogenic applications. Cryogenics, 82, 30-37. https://doi.org/10.1016/j.cryogenics.2017.01.005
  • Bermudo Gamboa, C., Martín-Béjar, S., Bañón García, F., & Sevilla Hurtado, L. (2024). Enhancing Fatigue Resistance of Polylactic Acid through Natural Reinforcement in Material Extrusion. Polymers, 16(17), Article 2422. https://doi.org/10.3390/polym16172422
  • Bourell, D., Kruth, J. P., Leu, M., Levy, G., Rosen, D., Beese, A. M., & Clare, A. (2017). Materials for additive manufacturing. CIRP Annals, 66(2), 659-681. https://doi.org/10.1016/j.cirp.2017.05.009
  • Chopra, S., Deshmukh, K. A., Somvanshi, M. V., Patil, N. V., Rakhe, S. R., Sontakke, R. V., ... & Carlone, P. (2021). Structural elucidation and mechanical behavior of cryogenically treated ultra-high molecular weight poly-ethylene (UHMWPE). Transactions of the Indian Institute of Metals, 74(2), 255-265. https://doi.org/10.1007/s12666-020-02140-2
  • Cruz, P., Shoemake, E. D., Adam, P., & Leachman, J. (2015, November). Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen. In IOP Conference Series: Materials Science and Engineering (Vol. 102, No. 1, p. 012020). IOP Publishing. doi:10.1088/1757-899X/102/1/012020
  • Çiçek, A., Kıvak, T., Uygur, I., Ekici, E., & Turgut, Y. (2012). Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 60(1), 65-73. https://doi.org/10.1007/s00170-011-3616-8
  • Das, D., Dutta, A. K., & Ray, K. K. (2009). Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear, 266(1-2), 297-309. https://doi.org/10.1016/j.wear.2008.07.001
  • Dey, A., & Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3), Article 64. https://doi.org/10.3390/jmmp3030064
  • Dizon, J. R. C., Espera Jr, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive manufacturing, 20, 44-67. https://doi.org/10.1016/j.addma.2017.12.002
  • Engler, L. G., Crespo, J. S., Gately, N. M., Major, I., & Devine, D. M. (2022). Process optimization for the 3D printing of PLA and HNT composites with Arburg plastic freeforming. Journal of Composites Science, 6(10), Article 309. https://doi.org/10.3390/jcs6100309
  • Evlen, H., Özdemir, M. A., & Çalışkan, A. (2019). Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri. Politeknik Dergisi, 22(4), 1031-1037. [in Turkish]. https://doi.org/10.2339/politeknik.426413
  • Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., & Arias, A. (2020). Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Materials & Design, 188, Article 108414. https://doi.org/10.1016/j.matdes.2019.108414
  • Gaweł, A., Kuciel, S., Liber-Kneć, A., & Mierzwiński, D. (2023). Examination of low-cyclic fatigue tests and poisson’s ratio depending on the different infill density of polylactide (PLA) produced by the fused deposition modeling method. Polymers, 15(7), Article 1651. https://doi.org/10.3390/polym15071651
  • Gebel, M. E., & Ermurat, M. (2021). Investigation of polymer matrix continuous fiber reinforced composite part manufacturability for composite additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(1), 57-67. [in Turkish]. https://doi.org/10.17341/gazimmfd.606618
  • Gupta, A., Kumar, N., Sachdeva, A., Sharma, G. K., Kumar, M., & Verma, R. (2025). Effect of cryogenic treatment on the mechanical properties of 3D-printed polylactic acid part. Cryogenics, 145, Article 104000. https://doi.org/10.1016/j.cryogenics.2024.104000
  • Horasan, M., & Sarac, I. (2024). The fatigue responses of 3D‐printed polylactic acid (PLA) parts with varying raster angles and printing speeds. Fatigue & Fracture of Engineering Materials & Structures, 47(10), 3693-3706. https://doi.org/10.1111/ffe.14406
  • Jayswal, A., & Adanur, S. (2022). Effect of heat treatment on crystallinity and mechanical properties of flexible structures 3D printed with fused deposition modeling. Journal of Industrial Textiles, 51(2S), 2616S-2641S. https://doi.org/10.1177/15280837211064937
  • Kannan, S., & Ramamoorthy, M. (2020). Mechanical characterization and experimental modal analysis of 3D printed ABS, PC and PC-ABS materials. Materials Research Express, 7(1), Article 015341. https://doi.org/10.1088/2053-1591/ab6a48
  • Karabıyık, Ö., & Apak, K. (2021). Eklemeli imalat yöntemiyle PLA malzemesinden üretilen ürünlerin mekanik özelliklerinin incelenmesi. Uluslararası Teknolojik Bilimler Dergisi, 13(2), 62-68. [in Turkish].
  • Karakoc, B., & Uzun, G. (2023). Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi. Politeknik Dergisi, 27(4), 1233-1242. [in Turkish]. https://doi.org/10.2339/politeknik.1262855
  • Koçar, O., Anaç, N., Baysal, E., Parmaksız, F., & Akgül, İ. (2024). Investigation of mechanical properties and color changes of 3D-printed parts with different infill ratios and colors after aging. Materials, 17(23), Article 5908. https://doi.org/10.3390/ma17235908
  • Konta, A. A., García-Piña, M., & Serrano, D. R. (2017). Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering, 4(4), Article 79. https://doi.org/10.3390/bioengineering4040079
  • Liu, Y., Dong, J., Tiersch, T. R., Wu, Q., & Monroe, W. T. (2022). An open hardware 3-D printed device for measuring tensile properties of thermoplastic filament polymers at cryogenic temperatures. Cryogenics, 121, Article 103409. https://doi.org/10.1016/j.cryogenics.2021.103409
  • Moghanizadeh, A., & Ashrafizadeh, F. (2021). Studying sacrificial ice structure, as soluble support layers, in 3D printing of polymers (FDM). Progress in Additive Manufacturing, 6(4), 757-763. https://doi.org/10.1007/s40964-021-00195-1
  • Ni, H., Zhuo, L., Gu, H., Lv, S., Zhu, Y., Shi, C., & Wang, X. (2018). Effect of cryogenic treatment on micro-structure and properties of different polymer materials. In MATEC Web of Conferences (Vol. 166, p. 01002). EDP Sciences. https://doi.org/10.1051/matecconf/201816601002
  • Pande, K. N., Peshwe, D. R., & Kumar, A. (2012). Effect of the cryogenic treatment on polyamide and optimization of its parameters for the enhancement of wear performance. Transactions of the Indian Institute of Metals, 65(3), 313-319. https://doi.org/10.1007/s12666-012-0135-8
  • Pandelidi, C., Bateman, S., Piegert, S., Hoehner, R., Kelbassa, I., & Brandt, M. (2021). The technology of continuous fibre-reinforced polymers: a review on extrusion additive manufacturing methods. The International Journal of Advanced Manufacturing Technology, 113(11), 3057-3077. https://doi.org/10.1007/s00170-021-06837-6
  • Podgornik, B., Leskovšek, V., & Vižintin, J. (2009). Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Materials and Manufacturing Processes, 24(7-8), 734-738. https://doi.org/10.1080/10426910902809339
  • Rouf, S., Raina, A., Haq, M. I. U., Naveed, N., Jeganmohan, S., & Kichloo, A. F. (2022). 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158. https://doi.org/10.1016/j.aiepr.2022.02.001
  • Salifu, S., Ogunbiyi, O., & Olubambi, P. A. (2022). Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites. The International Journal of Advanced Manufacturing Technology, 122(2), 577-600. https://doi.org/10.1007/s00170-022-09976-6
  • Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. (2020). A review on 3D printed matrix polymer composites: its potential and future challenges. The international journal of advanced manufacturing technology, 106(5), 1695-1721. https://doi.org/10.1007/s00170-019-04534-z
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Sözen, A., & Neşer, G. (2022). Eklemeli imalat yöntemiyle tekne inşaatında dolgu yoğunluğu ve örüntüsünün mukavemet üzerindeki bileşik etkisi. Gemi ve Deniz Teknolojisi, 221, 163-177. [in Turkish]. https://doi.org/10.54926/gdt.1117813
  • Stan, F., Stanciu, N. V., Sandu, I. L., Fetecau, C., & Serban, A. (2019). Effect of low and extreme-low temperature on mechanical properties of 3D printed polyethylene terephthalate glycol copolymer. The Romanian Journal of Technical Sciences. Applied Mechanics, 64(1), 21-41.
  • Valino, A. D., Dizon, J. R. C., Espera Jr, A. H., Chen, Q., Messman, J., & Advincula, R. C. (2019). Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, Article 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
  • Veer, P., Vettivel, S. C., Madan, J., & Pabla, B. S. (2023). Mechanical and tribological characterization of 3D printed-cryogenically treated thermoplastic polyurethane. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.09.050
  • Wang, Q., Zheng, F., & Wang, T. (2016). Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics, 75, 19-25. https://doi.org/10.1016/j.cryogenics.2016.01.001
  • Weiss, K. P., Bagrets, N., Lange, C., Goldacker, W., & Wohlgemuth, J. (2015, November). Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. In IOP Conference Series: Materials Science and Engineering (Vol. 102, No. 1, p. 012022). IOP Publishing. doi:10.1088/1757-899X/102/1/012022
  • Yap, P. V., Chan, M. Y., & Koay, S. C. (2021). Preliminary study on mechanical properties of 3D printed multi-materials ABS/PC parts: Effect of printing parameters. Journal of Physical Science, 32(2), 87-104. https://doi.org/10.21315/jps2021.32.2.7
  • Yap, Y. L., Toh, W., Koneru, R., Lin, K., Yeoh, K. M., Lim, C. M., Lee, J. S., Plemping, N. A., Lin, R., Ng, T. Y., Chan, K. I., Guang, H., Chan, W. Y. B., Teong, S. S., & Zheng, G. (2019). A non-destructive experimental-cum-numerical methodology for the characterization of 3D-printed materials—polycarbonate-acrylonitrile butadiene styrene (PC-ABS). Mechanics of Materials, 132, 121-133. https://doi.org/10.1016/j.mechmat.2019.03.005
  • Yılmaz, M., Yılmaz, N. F., Kılıç, A., & Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2), 859-867. [in Turkish]. https://doi.org/10.17341/gazimmfd.1213974
  • Zerankeshi, M. M., Bakhshi, R., & Alizadeh, R. (2022). Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting, 25, Article e00191. https://doi.org/10.1016/j.bprint.2022.e00191
There are 48 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Tribology, Mechanical Engineering (Other)
Journal Section Articles
Authors

Yusuf Arslan 0000-0003-1731-5423

Alirıza Altınsoy 0000-0002-8429-9606

Publication Date October 30, 2025
Submission Date July 3, 2025
Acceptance Date September 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Arslan, Y., & Altınsoy, A. (2025). Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment. Duzce University Journal of Science and Technology, 13(4), 1782-1798. https://doi.org/10.29130/dubited.1733839
AMA Arslan Y, Altınsoy A. Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment. DUBİTED. October 2025;13(4):1782-1798. doi:10.29130/dubited.1733839
Chicago Arslan, Yusuf, and Alirıza Altınsoy. “Improvement of Mechanical and Tribological Properties of PC ABS Composite Parts Manufactured With 3D FDM Technology by Cryogenic Treatment”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1782-98. https://doi.org/10.29130/dubited.1733839.
EndNote Arslan Y, Altınsoy A (October 1, 2025) Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment. Duzce University Journal of Science and Technology 13 4 1782–1798.
IEEE Y. Arslan and A. Altınsoy, “Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment”, DUBİTED, vol. 13, no. 4, pp. 1782–1798, 2025, doi: 10.29130/dubited.1733839.
ISNAD Arslan, Yusuf - Altınsoy, Alirıza. “Improvement of Mechanical and Tribological Properties of PC ABS Composite Parts Manufactured With 3D FDM Technology by Cryogenic Treatment”. Duzce University Journal of Science and Technology 13/4 (October2025), 1782-1798. https://doi.org/10.29130/dubited.1733839.
JAMA Arslan Y, Altınsoy A. Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment. DUBİTED. 2025;13:1782–1798.
MLA Arslan, Yusuf and Alirıza Altınsoy. “Improvement of Mechanical and Tribological Properties of PC ABS Composite Parts Manufactured With 3D FDM Technology by Cryogenic Treatment”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1782-98, doi:10.29130/dubited.1733839.
Vancouver Arslan Y, Altınsoy A. Improvement of Mechanical and Tribological Properties of PC/ABS Composite Parts Manufactured with 3D FDM Technology by Cryogenic Treatment. DUBİTED. 2025;13(4):1782-98.