Review
BibTex RIS Cite

Global Plastic Pollution in the Food Industry: Micro-Nanoplastics and Their Environmental Impact

Year 2024, Volume: 17 Issue: Özel Sayı (1), 70 - 77, 17.12.2024
https://doi.org/10.47027/duvetfd.1500998

Abstract

In recent years, the use of petroleum-based plastics in food packaging has increased due to various factors such as availability of raw material source, low cost, good insulation, poor electrical/heat conductivity and corrosion resistance, light weight, high strength and versatile manufacturability. In 2022, total plastic production was to 400.3 million metric tons, while plastic waste production reached 300 million metric tons, and only 14% of plastic waste was reported to be recycled. Among these production data, food packaging accounts for 50% of plastics derived from fossil fuels. Although plastic packaging has been used in the food industry for a long time, it harms the environment due to its stability, durability and non-biodegradability. In plastic production, fossil fuels such as crude oil, gas, and coal are commonly used as raw materials. Fossil fuels are the main sources of environmental pollution and toxic greenhouse gases (methane and ethylene). Today, the high global consumption of these fuels due to plastic production leads to serious adverse consequences. Changes in climate and seasonal patterns have negative consequences, including retreating glaciers and rising sea levels. In addition, when they break down, they turn into microplastics and nanoplastics, which eventually enter the food chain, posing health problems for humans and other living things in the environment. Microplastics and nanoplastics have attracted the most attention in recent years among plastic pollutants. Plastics in micro and nanoplastic forms pose a threat to human health due to their tiny sizes (microplastics (<5 mm) and nanoplastics (<1 μm), allowing them to easily enter the human body through airways and various pathways, including the food chain. Especially in recent years, studies have drawn attention to the transformation of plastics from their 'beneficial' use into 'waste', which causes significant global problems, and have focused on reducing the potential harmful effects of plastic-based materials on human and environmental health. In this review, the ecological cycle of petroleum-based plastics in food packaging, the effects of micro-nanoplastic wastes on marine, land and nature ecosystems, and global climate changes will be examined.

References

  • Jasso–Salcedo AB, Díaz–Cruz CA, Rivera–Vallejo CC, Jiménez–Regalado EJ, Aguirre–Loredo RY. (2024). Human Consumption of Microplastics via Food Type and Habits: Recent Review. Wat Air and Soil Poll. 235(2):1-22.
  • Frias JPGL, Nash R. (2019). Microplastics: Finding a Consensus on the Definition. Mar Pollut Bull. 138:145-147.
  • Iroegbu AOC, Sadiku RE, Ray SS, Hamam Y. (2020). Plastics in Municipal Drinking Water and Wastewater Treatment Plant Effluents: Challenges and Opportunities for South Africa—a Review. Environ Sci Pollut Res Int. 27:12953–12966.
  • Pan D, Su F, Liu C, Guo Z. (2020). Research Progress for Plastic Waste Management and Manufacture of Value-Added Products. Adv Compos Hybrid Mat. 3:443–461.
  • Pereyra‐Camacho MA, Pardo I. (2024). Plastics and The Sustainable Development Goals: from Waste to Wealth with Microbial Recycling and Upcycling. Microb Biotechnol. 17(4): e14459.
  • Xu S, Ma J, Ji R, Pan K, Miao AJ. (2020). Microplastics in Aquatic Environments: Occurrence, Accumulation, and Biological Effects. Sci Total Environ. 703: 134699.
  • Pivnenko K, Eriksen MK, Martín-Fernández JA, Eriksson E, Astrup TF. (2016). Recycling of Plastic Waste: Presence of Phthalates in Plastics from Households and Industry. Waste Manag. 54: 44-52.
  • Tencati A, Pogutz S, Moda B, Brambill M, Cacia C. (2016). Prevention Policies Addressing Packaging and Packaging Waste: Some Emerging Trends. Waste Manag. 56: 35-45.
  • Majder-Łopatka M, We ̨sierski T, Ankowski A, et al. (2022). Thermal Analysis of Plastics Used in the Food Industry. Mater. 15, 248.
  • Qasim U, I. Osman A, H. Al‐Muhtaseb A, et al. (2021). Renewable Cellulosic Nanocomposites for Food Packaging to Avoid Fossil Fuel Plastic Pollution: A Review. Environ. Chem. Lett. 19:613–641.
  • J.Groh K, Backhaus T, Carney-Almroth B, et al. (2019). Overview of Known Plastic Packaging-Associated Chemicals and their Hazards. Sci. Total Environ. 651:3253–3268.
  • Shen M, Song B, Zeng G, et al. (2020). Are Biodegradable Plastics a Promising Solution to Solve the Global Plastic Pollution? Environ. Pollut. 263:114469.
  • Evode N, Qamar SA, Bilal M, Barcelo D, Iqbal HMN. (2021). Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 4:100142.
  • Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. (2021). An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycl. 6, 12.
  • Yang Z, Lü, F, Zhang H, et al. (2021). Is Incineration the Terminator of Plastics and Microplastics? J Hazard Mater. 401: 123429.
  • Royer SJ, Ferrón S, Wilson ST, Karl DM. (2018). Production of Methane and Ethylene from Plastic in The Environment. PLoS ONE, 13(8): e0200574.
  • Zurub RE, Cariaco Y, Wade MG, Bainbridge SA. (2024). Microplastics Exposure: Implications for Human Fertility, Pregnancy and Child Health. Front Endocrinol. 14: 1330396.
  • Rubio L, Marcos R, Hernández A. (2020). Potential Adverse Health Effects of Ingested Micro- and Nanoplastics on Humans. Lessons Learned From in Vivo and in Vitro Mammalian Models. J Toxicol Env Health B Crit Rev. 23(2): 51-68.
  • Boone L, Préat N, Nhu TT, et al. (2023). Environmental Performance of Plastic Food Packaging: Life Cycle Assessment Extended with Costs on Marine Ecosystem Services. Sci Total Environ. 894: 164781.
  • Zhang J, Li T, Tao S, Shen M. (2024). Microplastic Pollution Interaction with Disinfectant Resistance Genes: Research Progress, Environmental Impacts, and Potential Threats. Environ Sci Pollut Res Int. 31: 16241–16255
  • Agarwal A, Shaida B, Rastogi M, Singh NB. (2023). Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chem Afr. 6: 117-144.
  • Kan, M, & Miller, SA. (2022). Environmental Impacts of Plastic Packaging of Food Products. Resour Conserv Recycl. 180: 106156.
  • Acquavia MA, Pascale R, Martelli G, Bondoni M, Bianco G. (2021). Natural Polymeric Materials: a Solution to Plastic Pollution from the Agro-Food Sector. Polym. 13,158.
  • Pilapitiya NTPGC, Ratnayake AS. (2024). The World of Plastic Waste: a Review. Cleaner Materials. 11: 100220.
  • Das, D., Panesar, P. S., Saini, C. S., Kennedy, J. F. 2022. Improvement in Properties of Edible Film Through Non-Thermal Treatments and Nanocomposite Materials: A Review, Food Packaging and Shelf Life, 32, 100843.
  • Geyer R, Jambeck JR, Law KL. (2017). Production, Use, and Fate of All Plastics Ever Made. Sci Adv. 3: e1700782.
  • Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. (2020). Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Mater. 13(21): 4994.
  • Lithner D, Larsson A, Dave G. (2011). Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Sci Total Environ. 409: 3309-3324.
  • Alhazmi H, Almansour FH, Aldhafeeri Z. (2021). Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13: 5340. 23
  • Organisation for Economic Co-operation and Development (OECD) (2022). Global Plastics Outlook: Policy Scenarios to 2060. OECD Publishing.
  • Jiao H, Ali SS, Alsharbaty MHM, et al. (2024). A Critical Review on Plastic Waste Life Cycle Assessment and Management: Challenges, Research Gaps, and Future Perspectives. Ecotoxicol Environ Saf. 271: 115942.
  • O. Fadare O, Wan B, Guo L, Zhao L. (2020). Microplastics from Consumer Plastic Food Containers: Are We Consuming It? 253- 126787.
  • Bishop G, Styles D, Lens PNL. (2020). Recycling of European Plastic is a Pathway for Plastic Debris in the Ocean. Environ Int. 142: 105893.
  • Wen S, Zhao Y, Wang M, Yuan H, Xu H. (2024). Micro(Nano) Plastics in Food System: Potential Health Impacts on Human Intestinal System. Crit Rev Food Sci Nutr. 64(5): 1429-1447.
  • Thompson RC, Olsen Y, Mitchell RP, Davis, A., et al. (2004). Lost at Sea: Where is All The Plastic? Science, 304 (5672): 838.
  • Hirt N, Body-Malapel M. (2020). Immunotoxicity and Intestinal Effects of Nano- and Microplastics: A Review of The Literature. Part Fibre Toxicol. 17: 1-22.
  • Esmeray E, Armutcu C. (2020). Mikroplastikler, Çevre-İnsan Sağlığı Üzerine Etkileri ve Analiz Yöntemleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(1): 839-868.
  • Ziani K, Ioniță-Mîndrican CB, Mititelu M, et al. (2023). Microplastics: A Real Global Threat for Environment and Food Safety: a State of the Art Review. Nutr. 15(3): 617.
  • Reynaud S, Aynard A, Grassl B, Gigault J. (2022). Nanoplastics: From Model Materials to Colloidal Fate. Curr Opin Colloid Interface Sci. 57: 101528.
  • Samsudin MS, Azman A, Latiffah ARN. (2023). Nanoplastics in Environment Environmental Risk, Occurrence, Characterization, and Identification. In: Nanofillers for Sustaniable Application. NM Nurazzi, E Bayraktar, MNF Norrahim, HA Aisyah, N Abdullah, MRM Asyraf (eds). 1st ed. pp. 188-197, CRC Press, Boca Raton.
  • Gulati S, Amar A, Olihan S. (2024). Environmental Fate, Behavior, and Risk Management Approaches of Nanoplastics in the Environment: Current Scenario and Future Insights. In: Solid Waste Treatment Technologies: Challenges and Perspectives. P Gautam, V Kumar, S Kumar(eds). 1st ed. pp. 148-172, CRC Press, Boca Raton.
  • Ye J, Ren Y, Dong Y, Fan D. (2024). Understanding The Impact of Nanoplastics on Reproductive Health: Exposure Pathways, Mechanisms, and Implications. Toxicology, 504: 153792.
  • Wang L, Zhu Q, Hu M, et al. (2024). Toxic Mechanisms of Nanoplastics Exposure at Environmental Concentrations on Juvenile Red Swamp Crayfish (Procambarus clarkii): from Multiple Perspectives. Environ Pollut. 352: 124125.
  • Hietbrink ST, Materic D, Holzinger R, Niemann H. (2023). High nanoplastic concentrations across the North Atlantic. Research Square. In press. Doi: 10.21203/rs.3.rs-3376869/v1
  • Yoganandham ST, Hamid N, Junaid M, Duan JJ, Pei DS. (2023). Micro(Nano) Plastics in Commercial Foods: a Review of Their Characterization and Potential Hazards to Human Health. Environ Res. 236: 116858.
  • Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 53(21), 12300–10.
  • Diaz-Basantes MF, Conesa JA, Fullana A. (2020). Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability. 12:551.
  • Daniel DB, Ashraf PM, Thomas SN, Thomson KT. (2021). Microplastics in The Edible Tissues of Shellfishes Sold for Human Consumption. Chemosphere. 264:128554.
  • Kedzierski M, Lechat B, Sire O, Le Maguer G, Le Tilly V, Bruzaud S. (2020). Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks. Food Packag. Shelf Life, 24:100489.
  • Mason SA, Welch VG, Neratko J. (2018). Synthetic Polymer Contamination in Bottled Water. Front Chem. 6: 389699.
  • Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. (2015). Microplastic Pollution in Table Salts from China. Environ Sci Technol. 49: 13622-13627.
  • Afrin S, Rahman MM, Hossain MN, Uddin MK, Malafaia G. (2022). Are There Plastic Particles in My Sugar? A Pioneering Study on the Characterization of Microplastics in Commercial Sugars and Risk Assessment. Sci Total Environ. 837: 155849.
  • Mühlschlegel P, Hauk A, Walter U, Sieber R. (2017). Lack of Evidence for Microplastic Contamination in Honey. Food Addit Contam. 34(11): 1982-1989.
  • Li Z, Li R, Li Q, Zhou J, Wang G. (2020). Physiological Response of Cucumber (Cucumis sativus L.) Leaves to Polystyrene Nanoplastics Pollution. Chemosphere, 255: 127041.
  • Sharma P. (2024). Microplastic Contamination in Food Processing: Role of Packaging Materials. Food Sci. Eng. 147:110516.
  • Cella C, La Spina R, Mehn D, et al. (2022). Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers. 14:1238.
  • Schymanski D, Goldbeck C, Humpf HU, Fürst P. (2018). Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineralwater. Water Research, 129, 154-62.
  • Arı M, Öğüt S. (2021). Mikroplastikler ve Çevresel Etkileri. Düzce Univ. Sci. Technol. J. 9:864-877.
  • Jadhav EB, Sankhla MS, Bhat RA, Bhagat DS. (2021). Microplastics from Food Packaging: an Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 16: 100608.
  • Winkler A, Santo N, Ortenzi MA, Bolzoni E, Bacchetta R, Tremolada P. (2019). Does Mechanical Stress Cause Microplastic Release from Plastic Water Bottles? Water Research, 166:115082.
  • Luo Y, Chuah C, Amin MA, et al. (2022). Assessment of Microplastics and Nanoplastics Released from a Chopping Board Using Raman İmaging in Combination With Three Algorithms. J. Hazard. Mater. 431:128636.
  • Marazuela MD, Klaiber M, Moreno-Gordaliza E, Barata A, G´omez-G´omez MM. (2022). Safety Assessment of Commercial Antimicrobial Food Packaging: Triclosan and Microplastics, a Closer Look. Food Packag. Shelf Life, 31:100780.
  • Li X, Wang X, Ren C, Palansooriya KN, Wang Z, Chang SX. (2024). Microplastic Pollution: Phytotoxicity, Environmental Risks, and Phytoremediation Strategies. Crit. Rev. Environ. Sci. Technol. 54:6, 486-507.
  • Lusher AL, Tirelli V, O’Connor I, Officer R. (2015). Microplastics in Arctic Polar Waters: The First Reported Values of Particles in Surface and Sub-Surface Samples. Sci Rep. 5(1): 14947.
  • Shen M, Song B, Zhu Y, et al. (2020). Removal of Microplastics via Drinking Water Treatment: Current Knowledge and Future Directions. Chemosphere, 251: 126612.
  • Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R. (2022). Microplastic Pollution in Soils, Plants, and Animals: A Review of Distributions, Effects and Potential Mechanisms. Sci Total Environ. 850: 157857.
  • Wieczorek AM, Croot PL, Lombard F, Sheahan JN, Doyle TK (2019). Microplastic Ingestion By Gelatinous Zooplankton May Lower Efficiency of the Biological Pump. Environ Sci Technol. 53(9): 5387-5395.
  • Ragusa A, Svelato A, Santacroce C, et al. (2021). Plasticenta: First Evidence of Microplastics in Human Placenta. Environ Int. 146: 106274.
  • Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. (2022). Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ Int. 163: 107199.
  • Gündogdu S, Rathod N, Hassoun A, et al. (2023). The Impact of Nano/Micro-Plastics Toxicity on Seafood Quality and Human Health: Facts and Gaps. Crit Rev Food Sci Nutr. 63(23): 6445-6463.
  • Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C. (2013). Contamination of Beach Sediments of A Subalpine Lake with Microplastic Particles. Curr Biol. 23(19): R867-R86855
  • Benson NU, Agboola OD, Fred-Ahmadu OH, De-la-Torre GE, Oluwalana A, Williams AB. (2022). Micro(Nano)Plastics Prevalence, Food Web Interactions, and Toxicity Assessment in Aquatic Organisms: A Review. Front Mar Sci. 9: 851281.
  • Ford HV, Jones NH, Davies AJ, et al. (2022). The Fundamental Links Between Climate Change and Marine Plastic Pollution. Sci Total Environ. 806: 150392.
  • Bento R, Hoey AS, Bauman AG, Feary DA, Burt JA. (2016). The Implications of Recurrent Disturbances Within The World’s Hottest Coral Reef. Mar Pollut Bull. 105: 466-472.
  • Halle AT, Jeanneau L, Martignac M, et al. (2017). Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Tech. 51(23): 13689-13697.
  • Wahl A, Le Juge C, Davranche M, et al. (2021). Nanoplastic Occurrence in A Soil Amended with Plastic Debris. Chemosphere, 262: 127784.
  • Bhat MA, Gedik K, Gaga EO. (2023). Atmospheric Micro (Nano) Plastics: Future Growing Concerns for Human Health. Air Qual Atmos Health. 16(2): 233–262.
  • Gupta J, Rajamani P. (2023). Beyond Microplastics: Concern of Nanoplastic Pollution on Human and Environmental Health. Plastic Pollution. EIACP: Geodiversity and Impact on Environment, 28(4): 1-10.
  • Joksimovic N, Selakovic D, Jovicic N, et al. (2022). Nanoplastics As an Invisible Threat to Humans and the Environment. J Nanomater. 2022(1): 6707819.
  • Chae Y, An Y. (2020). Nanoplastic Ingestion Induces Behavioral Disorders in Terrestrial Snails: Trophic Transfer Effect via Vascular Plants. Environ Sci Nano. 7(3): 975-983.
  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO. (2019). Microplastic–Toxic Chemical İnteraction: a Review Study on Quantified Levels, Mechanism And İmplication. SN Applied Sciences. 1:1400.
  • Chen YY, Cheng XT, Zeng YQ. (2023). The Occurrence of Microplastic in Aquatic Environment and Toxic Effects for Organisms. Int. J. Environ. Sci. Technol. 20:10477-10490.
  • Lee Y, Cho J, Sohn J, Kim C. (2023). Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med J. 64(5):301-308.
  • Meaza I, Toyoda JH, Wise Sr JP. (2021). Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front. Environ. Sci. 8:575614.
  • Kedzierski M, D'Almeida M, Magueresse A, et al. (2018). Threat of Plastic Ageing in Marine Environment. Adsorption/Desorption of Micropollutants. Mar. Pollut. Bull. 127:684–694.
  • Gündoğdu S, Çevik C, Ataş NT. (2020). Stuffed with Microplastics: Microplastic Occurrence in Traditional Stuffed Mussels Sold in the Turkish Market. Food Biosci. 37: 100715.
  • Aydın RB, Yozukmaz A, Şener İ, Temiz F, Giannetto D. (2023). Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life, 13(8): 1686.
  • Lu Y, Zhang Y, Deng Y, et al. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 50(7):4054-4060
  • Davarpanah E, Guilhermino L. (2019). Are Gold Nanoparticles and Microplastics Mixtures More Toxic to the Marine Microalgae Tetraselmis chuii than the Substances Individually? Ecotoxicol. Environ. Saf. 181:60-65.
  • Au SY, Bruce TF, Bridges C, J. Klaine S. (2015). Responses of Hyalella Azteca To Acute and Chronıc Mıcroplastıc Exposures. Environ. Toxicol. Chem. 34:11, 2564-2572.
  • Oliviero M, Tato T, Schiavo S, et al. (2019). Leachates of Micronized Plastic Toys Provoke Embryotoxic Effects Upon Sea Urchin Paracentrotus Lividus. Environ. Pollut. 247:706-715.
  • Ju P, Zhang Y, Zheng Y, et al. (2020). Probing The Toxic İnteractions Between Polyvinyl Chloride Microplastics and Human Serum Albumin by Multispectroscopic Techniques. Sci. Total Environ. 734:139219.
  • Grigorakis S, Mason SA, Drouillard KG. (2017). Determination of The Gut Retention of Plastic Microbeads and Microfibers in Goldfish (carassius auratus). Chemos. 169:233-238.
  • Kalcíkova G, Gotvajn AZ, Kladnik A, Jemec A. (2017). Impact of Polyethylene Microbeads on the Floating Freshwater Plant Duckweed Lemna minor. Environ. Pollut. 230:1108-1115.
  • Cole M, Lindeque P, Fileman E, et al. (2013). Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 47, 6646−6655.
  • Ogonowski M, Schür C, Jarsén Å, Gorokhova E. (2016). The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia Magna. PLoS ONE 11(5): e0155063.

Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri

Year 2024, Volume: 17 Issue: Özel Sayı (1), 70 - 77, 17.12.2024
https://doi.org/10.47027/duvetfd.1500998

Abstract

Son yıllarda gıda ambalajlamada petrol bazlı plastik kullanımının ham madde kaynağının bulunabilirliği, düşük maliyet, iyi yalıtım, zayıf elektrik/ısı iletkenlik ve korozyon direnci, hafiflik, yüksek mukavemet ve çok yönlü üretilebilirlik gibi çeşitli faktörler nedeniyle arttığı görülmektedir. 2022 yılında toplam plastik üretimi 400.3 milyon metrik ton olarak gerçekleşirken, plastik atık üretimi 300 milyon metrik ton seviyesine ulaşmıştır ve plastik atıkların sadece %14'ünün geri dönüştürüldüğü rapor edilmiştir. Bu üretim verilerinin arasında gıda ambalajları fosil yakıtlardan elde edilen plastiklerin %50'sini oluşturmaktadır. Plastik ambalajlar gıda endüstrisinde uzun süredir kullanılmasına rağmen kararlılıkları, dayanıklılıkları ve biyobozunur olmamaları sebebiyle çevreye zarar vermektedir. Plastik üretiminde genellikle ham madde olarak ham petrol, gaz ve kömür gibi fosil yakıtlar kullanılmaktadır. Fosil yakıtlar, çevre kirliliği ve toksik sera gazlarının (metan ve etilen) başlıca kaynaklarıdır. Günümüzde plastik üretiminden kaynaklanan bu yakıtların dünya genelinde yüksek bir oranda tüketilmesi, ciddi olumsuz sonuçlar doğurmaktadır. İklim ve mevsim düzenindeki değişiklikler, buzulların geri çekilmesi ve yükselen deniz seviyeleri dahil olmak üzere olumsuz sonuçlar meydana getirmektedir. Ayrıca parçalara ayrıldıklarında mikroplastiklere ve nanoplastiklere dönüşmekte, bunlar da nihayetinde besin zincirine girerek, insanlar ve çevredeki diğer canlılar için sağlık sorunları oluşturmaktadır. Mikroplastikler ve nanoplastikler, plastik kaynaklı kirleticiler arasında son yıllarda en fazla dikkati çeken konu olmuştur. Mikro ve nanoplastik formlarındaki plastikler, boyutlarının çok küçük olması (mikroplastik (<5 mm) ve nanoplastik (<1 μm) nedeniyle insan vücuduna hava yoluyla ve besin zinciri gibi çeşitli yollarla kolayca girerek insan sağlığını tehdit etmektedir. Özellikle son yıllarda yapılan çalışmalar plastiklerin ‘yararlı’ kullanımından küresel sorunlara sebebiyet veren ‘atıklara’ dönüşümüne dikkat çekmekte ve plastik bazlı malzemelerin insan ve çevre sağlığı üzerindeki potansiyel zararlı etkilerini azaltmaya odaklanmıştır. Bu derlemede gıda ambalajlamada petrol bazlı plastiklerin ekolojik döngüsü, mikro-nanoplastik atıkların deniz, kara ve doğa ekosistemine ve küresel iklim değişiklerine etkisi irdelenecektir.

Ethical Statement

Yazarlar herhangi bir çıkar çatışması beyan etmemektedir.

References

  • Jasso–Salcedo AB, Díaz–Cruz CA, Rivera–Vallejo CC, Jiménez–Regalado EJ, Aguirre–Loredo RY. (2024). Human Consumption of Microplastics via Food Type and Habits: Recent Review. Wat Air and Soil Poll. 235(2):1-22.
  • Frias JPGL, Nash R. (2019). Microplastics: Finding a Consensus on the Definition. Mar Pollut Bull. 138:145-147.
  • Iroegbu AOC, Sadiku RE, Ray SS, Hamam Y. (2020). Plastics in Municipal Drinking Water and Wastewater Treatment Plant Effluents: Challenges and Opportunities for South Africa—a Review. Environ Sci Pollut Res Int. 27:12953–12966.
  • Pan D, Su F, Liu C, Guo Z. (2020). Research Progress for Plastic Waste Management and Manufacture of Value-Added Products. Adv Compos Hybrid Mat. 3:443–461.
  • Pereyra‐Camacho MA, Pardo I. (2024). Plastics and The Sustainable Development Goals: from Waste to Wealth with Microbial Recycling and Upcycling. Microb Biotechnol. 17(4): e14459.
  • Xu S, Ma J, Ji R, Pan K, Miao AJ. (2020). Microplastics in Aquatic Environments: Occurrence, Accumulation, and Biological Effects. Sci Total Environ. 703: 134699.
  • Pivnenko K, Eriksen MK, Martín-Fernández JA, Eriksson E, Astrup TF. (2016). Recycling of Plastic Waste: Presence of Phthalates in Plastics from Households and Industry. Waste Manag. 54: 44-52.
  • Tencati A, Pogutz S, Moda B, Brambill M, Cacia C. (2016). Prevention Policies Addressing Packaging and Packaging Waste: Some Emerging Trends. Waste Manag. 56: 35-45.
  • Majder-Łopatka M, We ̨sierski T, Ankowski A, et al. (2022). Thermal Analysis of Plastics Used in the Food Industry. Mater. 15, 248.
  • Qasim U, I. Osman A, H. Al‐Muhtaseb A, et al. (2021). Renewable Cellulosic Nanocomposites for Food Packaging to Avoid Fossil Fuel Plastic Pollution: A Review. Environ. Chem. Lett. 19:613–641.
  • J.Groh K, Backhaus T, Carney-Almroth B, et al. (2019). Overview of Known Plastic Packaging-Associated Chemicals and their Hazards. Sci. Total Environ. 651:3253–3268.
  • Shen M, Song B, Zeng G, et al. (2020). Are Biodegradable Plastics a Promising Solution to Solve the Global Plastic Pollution? Environ. Pollut. 263:114469.
  • Evode N, Qamar SA, Bilal M, Barcelo D, Iqbal HMN. (2021). Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 4:100142.
  • Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. (2021). An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycl. 6, 12.
  • Yang Z, Lü, F, Zhang H, et al. (2021). Is Incineration the Terminator of Plastics and Microplastics? J Hazard Mater. 401: 123429.
  • Royer SJ, Ferrón S, Wilson ST, Karl DM. (2018). Production of Methane and Ethylene from Plastic in The Environment. PLoS ONE, 13(8): e0200574.
  • Zurub RE, Cariaco Y, Wade MG, Bainbridge SA. (2024). Microplastics Exposure: Implications for Human Fertility, Pregnancy and Child Health. Front Endocrinol. 14: 1330396.
  • Rubio L, Marcos R, Hernández A. (2020). Potential Adverse Health Effects of Ingested Micro- and Nanoplastics on Humans. Lessons Learned From in Vivo and in Vitro Mammalian Models. J Toxicol Env Health B Crit Rev. 23(2): 51-68.
  • Boone L, Préat N, Nhu TT, et al. (2023). Environmental Performance of Plastic Food Packaging: Life Cycle Assessment Extended with Costs on Marine Ecosystem Services. Sci Total Environ. 894: 164781.
  • Zhang J, Li T, Tao S, Shen M. (2024). Microplastic Pollution Interaction with Disinfectant Resistance Genes: Research Progress, Environmental Impacts, and Potential Threats. Environ Sci Pollut Res Int. 31: 16241–16255
  • Agarwal A, Shaida B, Rastogi M, Singh NB. (2023). Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chem Afr. 6: 117-144.
  • Kan, M, & Miller, SA. (2022). Environmental Impacts of Plastic Packaging of Food Products. Resour Conserv Recycl. 180: 106156.
  • Acquavia MA, Pascale R, Martelli G, Bondoni M, Bianco G. (2021). Natural Polymeric Materials: a Solution to Plastic Pollution from the Agro-Food Sector. Polym. 13,158.
  • Pilapitiya NTPGC, Ratnayake AS. (2024). The World of Plastic Waste: a Review. Cleaner Materials. 11: 100220.
  • Das, D., Panesar, P. S., Saini, C. S., Kennedy, J. F. 2022. Improvement in Properties of Edible Film Through Non-Thermal Treatments and Nanocomposite Materials: A Review, Food Packaging and Shelf Life, 32, 100843.
  • Geyer R, Jambeck JR, Law KL. (2017). Production, Use, and Fate of All Plastics Ever Made. Sci Adv. 3: e1700782.
  • Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. (2020). Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Mater. 13(21): 4994.
  • Lithner D, Larsson A, Dave G. (2011). Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Sci Total Environ. 409: 3309-3324.
  • Alhazmi H, Almansour FH, Aldhafeeri Z. (2021). Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13: 5340. 23
  • Organisation for Economic Co-operation and Development (OECD) (2022). Global Plastics Outlook: Policy Scenarios to 2060. OECD Publishing.
  • Jiao H, Ali SS, Alsharbaty MHM, et al. (2024). A Critical Review on Plastic Waste Life Cycle Assessment and Management: Challenges, Research Gaps, and Future Perspectives. Ecotoxicol Environ Saf. 271: 115942.
  • O. Fadare O, Wan B, Guo L, Zhao L. (2020). Microplastics from Consumer Plastic Food Containers: Are We Consuming It? 253- 126787.
  • Bishop G, Styles D, Lens PNL. (2020). Recycling of European Plastic is a Pathway for Plastic Debris in the Ocean. Environ Int. 142: 105893.
  • Wen S, Zhao Y, Wang M, Yuan H, Xu H. (2024). Micro(Nano) Plastics in Food System: Potential Health Impacts on Human Intestinal System. Crit Rev Food Sci Nutr. 64(5): 1429-1447.
  • Thompson RC, Olsen Y, Mitchell RP, Davis, A., et al. (2004). Lost at Sea: Where is All The Plastic? Science, 304 (5672): 838.
  • Hirt N, Body-Malapel M. (2020). Immunotoxicity and Intestinal Effects of Nano- and Microplastics: A Review of The Literature. Part Fibre Toxicol. 17: 1-22.
  • Esmeray E, Armutcu C. (2020). Mikroplastikler, Çevre-İnsan Sağlığı Üzerine Etkileri ve Analiz Yöntemleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(1): 839-868.
  • Ziani K, Ioniță-Mîndrican CB, Mititelu M, et al. (2023). Microplastics: A Real Global Threat for Environment and Food Safety: a State of the Art Review. Nutr. 15(3): 617.
  • Reynaud S, Aynard A, Grassl B, Gigault J. (2022). Nanoplastics: From Model Materials to Colloidal Fate. Curr Opin Colloid Interface Sci. 57: 101528.
  • Samsudin MS, Azman A, Latiffah ARN. (2023). Nanoplastics in Environment Environmental Risk, Occurrence, Characterization, and Identification. In: Nanofillers for Sustaniable Application. NM Nurazzi, E Bayraktar, MNF Norrahim, HA Aisyah, N Abdullah, MRM Asyraf (eds). 1st ed. pp. 188-197, CRC Press, Boca Raton.
  • Gulati S, Amar A, Olihan S. (2024). Environmental Fate, Behavior, and Risk Management Approaches of Nanoplastics in the Environment: Current Scenario and Future Insights. In: Solid Waste Treatment Technologies: Challenges and Perspectives. P Gautam, V Kumar, S Kumar(eds). 1st ed. pp. 148-172, CRC Press, Boca Raton.
  • Ye J, Ren Y, Dong Y, Fan D. (2024). Understanding The Impact of Nanoplastics on Reproductive Health: Exposure Pathways, Mechanisms, and Implications. Toxicology, 504: 153792.
  • Wang L, Zhu Q, Hu M, et al. (2024). Toxic Mechanisms of Nanoplastics Exposure at Environmental Concentrations on Juvenile Red Swamp Crayfish (Procambarus clarkii): from Multiple Perspectives. Environ Pollut. 352: 124125.
  • Hietbrink ST, Materic D, Holzinger R, Niemann H. (2023). High nanoplastic concentrations across the North Atlantic. Research Square. In press. Doi: 10.21203/rs.3.rs-3376869/v1
  • Yoganandham ST, Hamid N, Junaid M, Duan JJ, Pei DS. (2023). Micro(Nano) Plastics in Commercial Foods: a Review of Their Characterization and Potential Hazards to Human Health. Environ Res. 236: 116858.
  • Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 53(21), 12300–10.
  • Diaz-Basantes MF, Conesa JA, Fullana A. (2020). Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability. 12:551.
  • Daniel DB, Ashraf PM, Thomas SN, Thomson KT. (2021). Microplastics in The Edible Tissues of Shellfishes Sold for Human Consumption. Chemosphere. 264:128554.
  • Kedzierski M, Lechat B, Sire O, Le Maguer G, Le Tilly V, Bruzaud S. (2020). Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks. Food Packag. Shelf Life, 24:100489.
  • Mason SA, Welch VG, Neratko J. (2018). Synthetic Polymer Contamination in Bottled Water. Front Chem. 6: 389699.
  • Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. (2015). Microplastic Pollution in Table Salts from China. Environ Sci Technol. 49: 13622-13627.
  • Afrin S, Rahman MM, Hossain MN, Uddin MK, Malafaia G. (2022). Are There Plastic Particles in My Sugar? A Pioneering Study on the Characterization of Microplastics in Commercial Sugars and Risk Assessment. Sci Total Environ. 837: 155849.
  • Mühlschlegel P, Hauk A, Walter U, Sieber R. (2017). Lack of Evidence for Microplastic Contamination in Honey. Food Addit Contam. 34(11): 1982-1989.
  • Li Z, Li R, Li Q, Zhou J, Wang G. (2020). Physiological Response of Cucumber (Cucumis sativus L.) Leaves to Polystyrene Nanoplastics Pollution. Chemosphere, 255: 127041.
  • Sharma P. (2024). Microplastic Contamination in Food Processing: Role of Packaging Materials. Food Sci. Eng. 147:110516.
  • Cella C, La Spina R, Mehn D, et al. (2022). Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers. 14:1238.
  • Schymanski D, Goldbeck C, Humpf HU, Fürst P. (2018). Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineralwater. Water Research, 129, 154-62.
  • Arı M, Öğüt S. (2021). Mikroplastikler ve Çevresel Etkileri. Düzce Univ. Sci. Technol. J. 9:864-877.
  • Jadhav EB, Sankhla MS, Bhat RA, Bhagat DS. (2021). Microplastics from Food Packaging: an Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 16: 100608.
  • Winkler A, Santo N, Ortenzi MA, Bolzoni E, Bacchetta R, Tremolada P. (2019). Does Mechanical Stress Cause Microplastic Release from Plastic Water Bottles? Water Research, 166:115082.
  • Luo Y, Chuah C, Amin MA, et al. (2022). Assessment of Microplastics and Nanoplastics Released from a Chopping Board Using Raman İmaging in Combination With Three Algorithms. J. Hazard. Mater. 431:128636.
  • Marazuela MD, Klaiber M, Moreno-Gordaliza E, Barata A, G´omez-G´omez MM. (2022). Safety Assessment of Commercial Antimicrobial Food Packaging: Triclosan and Microplastics, a Closer Look. Food Packag. Shelf Life, 31:100780.
  • Li X, Wang X, Ren C, Palansooriya KN, Wang Z, Chang SX. (2024). Microplastic Pollution: Phytotoxicity, Environmental Risks, and Phytoremediation Strategies. Crit. Rev. Environ. Sci. Technol. 54:6, 486-507.
  • Lusher AL, Tirelli V, O’Connor I, Officer R. (2015). Microplastics in Arctic Polar Waters: The First Reported Values of Particles in Surface and Sub-Surface Samples. Sci Rep. 5(1): 14947.
  • Shen M, Song B, Zhu Y, et al. (2020). Removal of Microplastics via Drinking Water Treatment: Current Knowledge and Future Directions. Chemosphere, 251: 126612.
  • Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R. (2022). Microplastic Pollution in Soils, Plants, and Animals: A Review of Distributions, Effects and Potential Mechanisms. Sci Total Environ. 850: 157857.
  • Wieczorek AM, Croot PL, Lombard F, Sheahan JN, Doyle TK (2019). Microplastic Ingestion By Gelatinous Zooplankton May Lower Efficiency of the Biological Pump. Environ Sci Technol. 53(9): 5387-5395.
  • Ragusa A, Svelato A, Santacroce C, et al. (2021). Plasticenta: First Evidence of Microplastics in Human Placenta. Environ Int. 146: 106274.
  • Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. (2022). Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ Int. 163: 107199.
  • Gündogdu S, Rathod N, Hassoun A, et al. (2023). The Impact of Nano/Micro-Plastics Toxicity on Seafood Quality and Human Health: Facts and Gaps. Crit Rev Food Sci Nutr. 63(23): 6445-6463.
  • Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C. (2013). Contamination of Beach Sediments of A Subalpine Lake with Microplastic Particles. Curr Biol. 23(19): R867-R86855
  • Benson NU, Agboola OD, Fred-Ahmadu OH, De-la-Torre GE, Oluwalana A, Williams AB. (2022). Micro(Nano)Plastics Prevalence, Food Web Interactions, and Toxicity Assessment in Aquatic Organisms: A Review. Front Mar Sci. 9: 851281.
  • Ford HV, Jones NH, Davies AJ, et al. (2022). The Fundamental Links Between Climate Change and Marine Plastic Pollution. Sci Total Environ. 806: 150392.
  • Bento R, Hoey AS, Bauman AG, Feary DA, Burt JA. (2016). The Implications of Recurrent Disturbances Within The World’s Hottest Coral Reef. Mar Pollut Bull. 105: 466-472.
  • Halle AT, Jeanneau L, Martignac M, et al. (2017). Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Tech. 51(23): 13689-13697.
  • Wahl A, Le Juge C, Davranche M, et al. (2021). Nanoplastic Occurrence in A Soil Amended with Plastic Debris. Chemosphere, 262: 127784.
  • Bhat MA, Gedik K, Gaga EO. (2023). Atmospheric Micro (Nano) Plastics: Future Growing Concerns for Human Health. Air Qual Atmos Health. 16(2): 233–262.
  • Gupta J, Rajamani P. (2023). Beyond Microplastics: Concern of Nanoplastic Pollution on Human and Environmental Health. Plastic Pollution. EIACP: Geodiversity and Impact on Environment, 28(4): 1-10.
  • Joksimovic N, Selakovic D, Jovicic N, et al. (2022). Nanoplastics As an Invisible Threat to Humans and the Environment. J Nanomater. 2022(1): 6707819.
  • Chae Y, An Y. (2020). Nanoplastic Ingestion Induces Behavioral Disorders in Terrestrial Snails: Trophic Transfer Effect via Vascular Plants. Environ Sci Nano. 7(3): 975-983.
  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO. (2019). Microplastic–Toxic Chemical İnteraction: a Review Study on Quantified Levels, Mechanism And İmplication. SN Applied Sciences. 1:1400.
  • Chen YY, Cheng XT, Zeng YQ. (2023). The Occurrence of Microplastic in Aquatic Environment and Toxic Effects for Organisms. Int. J. Environ. Sci. Technol. 20:10477-10490.
  • Lee Y, Cho J, Sohn J, Kim C. (2023). Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med J. 64(5):301-308.
  • Meaza I, Toyoda JH, Wise Sr JP. (2021). Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front. Environ. Sci. 8:575614.
  • Kedzierski M, D'Almeida M, Magueresse A, et al. (2018). Threat of Plastic Ageing in Marine Environment. Adsorption/Desorption of Micropollutants. Mar. Pollut. Bull. 127:684–694.
  • Gündoğdu S, Çevik C, Ataş NT. (2020). Stuffed with Microplastics: Microplastic Occurrence in Traditional Stuffed Mussels Sold in the Turkish Market. Food Biosci. 37: 100715.
  • Aydın RB, Yozukmaz A, Şener İ, Temiz F, Giannetto D. (2023). Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life, 13(8): 1686.
  • Lu Y, Zhang Y, Deng Y, et al. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 50(7):4054-4060
  • Davarpanah E, Guilhermino L. (2019). Are Gold Nanoparticles and Microplastics Mixtures More Toxic to the Marine Microalgae Tetraselmis chuii than the Substances Individually? Ecotoxicol. Environ. Saf. 181:60-65.
  • Au SY, Bruce TF, Bridges C, J. Klaine S. (2015). Responses of Hyalella Azteca To Acute and Chronıc Mıcroplastıc Exposures. Environ. Toxicol. Chem. 34:11, 2564-2572.
  • Oliviero M, Tato T, Schiavo S, et al. (2019). Leachates of Micronized Plastic Toys Provoke Embryotoxic Effects Upon Sea Urchin Paracentrotus Lividus. Environ. Pollut. 247:706-715.
  • Ju P, Zhang Y, Zheng Y, et al. (2020). Probing The Toxic İnteractions Between Polyvinyl Chloride Microplastics and Human Serum Albumin by Multispectroscopic Techniques. Sci. Total Environ. 734:139219.
  • Grigorakis S, Mason SA, Drouillard KG. (2017). Determination of The Gut Retention of Plastic Microbeads and Microfibers in Goldfish (carassius auratus). Chemos. 169:233-238.
  • Kalcíkova G, Gotvajn AZ, Kladnik A, Jemec A. (2017). Impact of Polyethylene Microbeads on the Floating Freshwater Plant Duckweed Lemna minor. Environ. Pollut. 230:1108-1115.
  • Cole M, Lindeque P, Fileman E, et al. (2013). Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 47, 6646−6655.
  • Ogonowski M, Schür C, Jarsén Å, Gorokhova E. (2016). The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia Magna. PLoS ONE 11(5): e0155063.
There are 96 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Food Hygiene and Technology
Journal Section Review
Authors

Müge Uyarcan 0000-0003-1474-672X

Sude Cansın Güngör 0009-0005-9166-6952

Publication Date December 17, 2024
Submission Date June 13, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2024 Volume: 17 Issue: Özel Sayı (1)

Cite

APA Uyarcan, M., & Güngör, S. C. (2024). Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 17(Özel Sayı (1), 70-77. https://doi.org/10.47027/duvetfd.1500998
AMA Uyarcan M, Güngör SC. Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri. Dicle Üniv Vet Fak Derg. December 2024;17(Özel Sayı (1):70-77. doi:10.47027/duvetfd.1500998
Chicago Uyarcan, Müge, and Sude Cansın Güngör. “Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler Ve Çevresel Etkileri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17, no. Özel Sayı (1) (December 2024): 70-77. https://doi.org/10.47027/duvetfd.1500998.
EndNote Uyarcan M, Güngör SC (December 1, 2024) Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17 Özel Sayı (1) 70–77.
IEEE M. Uyarcan and S. C. Güngör, “Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri”, Dicle Üniv Vet Fak Derg, vol. 17, no. Özel Sayı (1), pp. 70–77, 2024, doi: 10.47027/duvetfd.1500998.
ISNAD Uyarcan, Müge - Güngör, Sude Cansın. “Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler Ve Çevresel Etkileri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17/Özel Sayı (1) (December 2024), 70-77. https://doi.org/10.47027/duvetfd.1500998.
JAMA Uyarcan M, Güngör SC. Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri. Dicle Üniv Vet Fak Derg. 2024;17:70–77.
MLA Uyarcan, Müge and Sude Cansın Güngör. “Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler Ve Çevresel Etkileri”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. Özel Sayı (1), 2024, pp. 70-77, doi:10.47027/duvetfd.1500998.
Vancouver Uyarcan M, Güngör SC. Gıda Endüstrisinde Küresel Plastik Kirliliği: Mikro-Nanoplastikler ve Çevresel Etkileri. Dicle Üniv Vet Fak Derg. 2024;17(Özel Sayı (1):70-7.