BibTex RIS Cite

Bulanık Mantık Tabanlı Ekonometrik Modelleme: Para Talebi-Türkiye Örneği

Year 2011, Volume: 11 Issue: 3, 349 - 359, 01.08.2011

Abstract

Günümüzde yapılan para talebinin modellenmesine ilişkin literatürü incelediğimizde, modelleme yöntemi olarak çoğunlukla kointegrasyon testlerinin kullanılmış olduğu ve bu testlerden Engle-Granger (1987) yanı sıra Johansen-Juselius (1990) tarafından önerilen kointegrasyon tekniklerinin birçok araştırmacı tarafından çoğu ülkenin para talebinin modellenmesinde uygulandığı görülmektedir. Para politikasının uygulanması aşamasında politik tutumların değerlendirilmesinin yanı sıra para politikası kapsamında alınacak kararlar, para ve diğer makroekonomik değişkenler arasındaki ilişkinin incelenmesine bağlı olduğundan, farklı fonksiyonel ilişkileri değerlendirmemize izin veren farklı modelleme yöntemlerinin ele alınarak değerlendirilmesi önem kazanmaktadır. Bu çalışmanın amacı, literatürde yaygın bir biçimde kullanılan ekonometrik modelleme yöntemine karşılık alternatif bir yöntem ortaya koymaktır. Bu nedenle, çalışmada kointegrasyon yöntemlerinden biri olan Engle-Granger (1987) tarafından önerilen eşbütünleşme testi ile bulanık modelleme yöntemlerinden bulanık Takagi-Sugeno modeli kullanılıp, iki yöntem Türkiye’nin para talebi fonksiyonunun incelenmesi aşamasında karşılaştırılarak yorumlanmıştır

References

  • Achsani, N.A., Holtemöller, O. ve Sofyan, H. (2005) “Econometric and Fuzzy Modelling of Indonesian Money De- mand” Cizek, P. Hardle, W. ve Weron, R. (eds) Statistical Tools in Finance and Insurance, Berlin, Germany, Springer.
  • Akay, H.K. ve Nargeleçekenler, M. (2008) “Uzun Dönem Para Talebi ve Reel Hisse Senedi Fiyatları: Türkiye Örneği” Fi- nans Politik ve Ekonomik Yorumlar, 45(518):31-41.
  • Akçağlayan, A. ve Dönmez, F. (2006) “How Stable is the Money Demand Function in Turkey ” Working Paper Series, 7(2):7-18.
  • Altıntaş, H. (2008) “Türkiye’de Para Talebinin İstikrarı ve Sınır Testi Yaklaşımıyla Öngörülmesi: 1985–2006” Erciyes Üni- versitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 30: 15–46.
  • Bezdek, J.C. ve Pal, S. K. (1992) Fuzzy Models for Pattern Recognition, New York, IEEE Press,
  • Deckle, R ve Pradhan, M. (1999) “Financial Liberalization and Money Demand in the ASEAN Countries” International Journal of Finance and Economics, 4: 205–215.
  • Draeseke R. ve Giles D. E. A. (2000) “A Fuzzy Logic Approach To Modelling The New Zealand Underground Economy” Mathematics and Computers in Simulation, 59(1- 3):115-123.
  • Giles, D.E.A. ve Draeseke, R. (2001) “Econometric Mo- delling Using Pattern Recognition via the Fuzzy c-Means Algo- rithm” Giles, D.E.A. (eds.) Computer-Aided Econometrics, New York, Marcel Dekker.
  • Josef A. M. (1992) “Neural Market Structure Analysis: Novel Topology-Sensitive Methodology” European Journal of Marketing, 35(7/8):894-914.
  • Wolkenhauer, O. (2001) Data Engineering: Fuzzy Mathe- matics in System Theory and Data Analysis, New York, Wiley.
  • Zadeh, L.A.(1987) Fuzzy Sets and Applications: Selected Pa- pers, New York, Wiley. -30 10 20 30 40 50 60 70 80 90 CUSUM 5% Significance

Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey

Year 2011, Volume: 11 Issue: 3, 349 - 359, 01.08.2011

Abstract

At the present day, we investigate literature about Money demand, we can see that cointegration techniques are used in most of studies. Money demand econometric modelling techniques are used by a great number of researchers. Mostly, cointegration techniques are being used as estimating methods for any money demand function.Cointegration techniques which were proposed by Engle-Granger (1987) and Johansen-Juselius (1990) have been used for modelling countries’ money demand function by researchers. In stage of application of monetary policy, when assessment of policy stance as well as monetary policy decisions depend on the relationship between money and the other macroeconomic variables, different methods which allows for different functional relations are being important. The purpose of this study is proposing an alternative method, instead of econometric modelling methods which have been used widely in literature. Thus, in this study, cointegration test which was proposed by EngleGranger (1987) and fuzzy Takagi-Sugeno method are used to estimate Turkey’s money demand function and two methods are compared and consequently,the results are interpreted

References

  • Achsani, N.A., Holtemöller, O. ve Sofyan, H. (2005) “Econometric and Fuzzy Modelling of Indonesian Money De- mand” Cizek, P. Hardle, W. ve Weron, R. (eds) Statistical Tools in Finance and Insurance, Berlin, Germany, Springer.
  • Akay, H.K. ve Nargeleçekenler, M. (2008) “Uzun Dönem Para Talebi ve Reel Hisse Senedi Fiyatları: Türkiye Örneği” Fi- nans Politik ve Ekonomik Yorumlar, 45(518):31-41.
  • Akçağlayan, A. ve Dönmez, F. (2006) “How Stable is the Money Demand Function in Turkey ” Working Paper Series, 7(2):7-18.
  • Altıntaş, H. (2008) “Türkiye’de Para Talebinin İstikrarı ve Sınır Testi Yaklaşımıyla Öngörülmesi: 1985–2006” Erciyes Üni- versitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 30: 15–46.
  • Bezdek, J.C. ve Pal, S. K. (1992) Fuzzy Models for Pattern Recognition, New York, IEEE Press,
  • Deckle, R ve Pradhan, M. (1999) “Financial Liberalization and Money Demand in the ASEAN Countries” International Journal of Finance and Economics, 4: 205–215.
  • Draeseke R. ve Giles D. E. A. (2000) “A Fuzzy Logic Approach To Modelling The New Zealand Underground Economy” Mathematics and Computers in Simulation, 59(1- 3):115-123.
  • Giles, D.E.A. ve Draeseke, R. (2001) “Econometric Mo- delling Using Pattern Recognition via the Fuzzy c-Means Algo- rithm” Giles, D.E.A. (eds.) Computer-Aided Econometrics, New York, Marcel Dekker.
  • Josef A. M. (1992) “Neural Market Structure Analysis: Novel Topology-Sensitive Methodology” European Journal of Marketing, 35(7/8):894-914.
  • Wolkenhauer, O. (2001) Data Engineering: Fuzzy Mathe- matics in System Theory and Data Analysis, New York, Wiley.
  • Zadeh, L.A.(1987) Fuzzy Sets and Applications: Selected Pa- pers, New York, Wiley. -30 10 20 30 40 50 60 70 80 90 CUSUM 5% Significance
There are 11 citations in total.

Details

Other ID JA72FK73FR
Journal Section Research Article
Authors

Serkan Aras This is me

Emrah Gülay This is me

Publication Date August 1, 2011
Published in Issue Year 2011 Volume: 11 Issue: 3

Cite

APA Aras, S., & Gülay, E. (2011). Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey. Ege Academic Review, 11(3), 349-359.
AMA Aras S, Gülay E. Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey. ear. August 2011;11(3):349-359.
Chicago Aras, Serkan, and Emrah Gülay. “Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey”. Ege Academic Review 11, no. 3 (August 2011): 349-59.
EndNote Aras S, Gülay E (August 1, 2011) Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey. Ege Academic Review 11 3 349–359.
IEEE S. Aras and E. Gülay, “Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey”, ear, vol. 11, no. 3, pp. 349–359, 2011.
ISNAD Aras, Serkan - Gülay, Emrah. “Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey”. Ege Academic Review 11/3 (August 2011), 349-359.
JAMA Aras S, Gülay E. Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey. ear. 2011;11:349–359.
MLA Aras, Serkan and Emrah Gülay. “Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey”. Ege Academic Review, vol. 11, no. 3, 2011, pp. 349-5.
Vancouver Aras S, Gülay E. Fuzzy Logic Based Econometric Modelling: Money Demand-Evidence From Turkey. ear. 2011;11(3):349-5.