Oluklu Çekirdekli Sandviç Panellerin Deformasyon Davranışı Üzerine Simulasyon Çalışması
Year 2022,
, 843 - 852, 31.05.2022
Çetin Karakaya
,
Seçil Ekşi
Abstract
Bu çalışmada, farklı oluklu çekirdek konfigürasyonlarına sahip sandviç panel yapılarının yarı statik eğilme yükü etkisi altındaki deformasyon davranışı sayısal olarak incelenmiştir. Oluklu çekirdek, dairesel, sinüzoidal, dikdörtgen, yamuk ve üçgen geometrilere sahip dökme poliamid (PA6) malzemeden oluşur. Sandviç panelde yüzey kabuğu olarak Alüminyum 6063-T5 plaka kullanılmıştır. Analiz sonuçlarına göre en yüksek deformasyon direncini 6363.6 N ile trapez çekirdekli sandviç panel sağlamıştır. Dairesel çekirdekli sandviç panel ise 4262.5 N ile en düşük deformasyon direncini göstermiştir. Özgül taşıma ve özgül enerji etme kapasitesi en yüksek olan sandviç panel trapez çekirdekli paneldir.
References
- Arunkumar, M.P., Pitchaimani J., Gangadharan, K.V., Bending and free vibration analysis of foam-filled truss core sandwich panel, Journal of Sandwich Structures and Materials, 2016, 0(00), 1-22.
- ZU, G-Y., LU, R-H., LI, X-B., ZHONG, Z-Y., MA, X-J., HAN, M-B., YAO, G-C., Three-point bending behavior of aluminum foam sandwich with steel panel, Trans. Nonferrous Met. Soc. China, 2013, 23, 2491−2495.
- Sun, G., Wang, E., Wang, H., Xiao, Z., Qing Li, Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores, Materials and Design, 2018, 160, 1117–1136.
- Zhu, Y., Sun, Y., Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration, International Journal of Impact Engineering, 2020, 139, 103508.
- Liu, Q., Fu, J., Wang, J., Ma, J., Chen, H., Li, Q., Hui, D., Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam, Composites Part B, 2017, 130, 236-247.
- Vignjevi, R., Campbell, J., Hughes, K., Orłowski, M., Garce, S., Withers, P., Reed, J., Soft body impact resistance of composite foam core sandwich panels with unidirectional corrugated and tubular reinforcements, International Journal of Impact Engineering, 2019, 132, 103320.
- Lia, Z., Zheng, Z., Yu, J., Lu, F., Deformation and perforation of sandwich panels with aluminum-foam core at elevated temperatures, International Journal of Impact Engineering, 2017, 109, 366-377.
- Xi, H., Tang, L., Luo, S., Liu, Y., Jiang, Z. Liu, Z., A numerical study of temperature effect on the penetration of aluminum foam sandwich panels under impact, Composites Part B, 2017, 130, 217-229.
- Liu, C., Zhang, Y.X., Ye, L., High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core, International Journal of Impact Engineering, 2017, 100, 139-153,
- Önal, T., TEMİZ, Ş., Experimental Investigation of Impact Behavior of Balsa Core Sandwich Composites, El-Cezerî Journal of Science and Engineering, 2021, 8(1), 333-345.
- Xiong, J., Maa, L., Stocchi, A., Yang, J., Wua, L., Pan, S., Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores, Composite Structures, 2014, 108, 234-242.
- Sun, G., Chen, D., Wang, H., Hazell, P.J., Li, Q., High-velocity impact behavior of aluminium honeycomb sandwich panels with different structural configurations, International Journal of Impact Engineering, 2018, 122, 119-136.
- Zhang, D., Jiang, D., Fei, Q., Wu, S., Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact, Finite Elements in Analysis and Design, 2016, 117-118, 21-30.
- Wang, J., Shi, C., Yang, N., Sun, H., Liu, Y., Song B., Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body, Composite Structures, 2018, 184, 1189-1196.
- Li, S., Li, XX., Wang, Z., Wu, G., Lu, G., Zhao L., Sandwich panels with layered graded aluminum honeycomb cores under blast loading, Composite Structures, 2017, 173, 242-254.
- Subaşı, S., Çetin, V., Şamandar, A., The Effect of GFRP Plate and Core Thickness on Mechanical Properties in Composite Panels, El-Cezerî Journal of Science and Engineering, 2017, 4(2), 135-145.
- Sarvestani, H.Y., Akbarzadeha, A.H., Niknama, H., Hermenean, K., 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Composite Structures, 2018, 200, 886-909.
- Zhang, P., Cheng, Y., Liu, J., Li , Y., Zhang, C., Hou, H., Wang, C., Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading, Composites Part B, 2016, 105, 67-81.
- Shu, C., Zhao, S., Hou, S., Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading, Thin-Walled Structures, 2018,133, 42-51.
- Taghizadeh, S.A., Naghdinasab, M., Madadi, H., Farrokhabadi, A., Investigation of novel multi-layer sandwich panels under quasi-static indentation loading using experimental and numerical analyses, Thin–Walled Structures, 2021, 160, 107326.
- Xiong J., Maa, L., Pan, S., Wua, L., Papadopoulos, J., Vaziri, Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores, A., Acta Materialia, 2012, 60 1455-1466.
- Qi, G., Ma, L., Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts, Composite Structures, 2018, 187, 336-343.
- Wu, X., Xiao, K., Yin, Q., Zhong, F., Huang, C., Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core, International Journal of Mechanical Sciences, 2018, 138-139, 467-475.
- Rong, Y., Liu, J., Luo, W., He, W., Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels, Composites Part B, 2018, 152, 324-335.
Simulation study on deformation behavior of sandwich panels with corrugated cores
Year 2022,
, 843 - 852, 31.05.2022
Çetin Karakaya
,
Seçil Ekşi
Abstract
In this study, the deformation behaviour of sandwich panels structures with different configurations of corrugated cores under the effect of quasi-static bending loading is investigated numerically. The corrugated core is consists of cast polyamide (PA6) material with circular, sinusoidal, rectangular, trapezoid, and triangular geometries. An Aluminum 6063-T5 plate is used as the skin of the sandwich panel. According to the analysis results, the sandwich panel with a trapezoidal core provided the highest deformation resistance with 6363.6 N. The circular core sandwich panel showed the lowest deformation resistance with 4262.5 N. The sandwich panel with the highest specific carrying and specific energy capacity is the trapezoidal core panel.
References
- Arunkumar, M.P., Pitchaimani J., Gangadharan, K.V., Bending and free vibration analysis of foam-filled truss core sandwich panel, Journal of Sandwich Structures and Materials, 2016, 0(00), 1-22.
- ZU, G-Y., LU, R-H., LI, X-B., ZHONG, Z-Y., MA, X-J., HAN, M-B., YAO, G-C., Three-point bending behavior of aluminum foam sandwich with steel panel, Trans. Nonferrous Met. Soc. China, 2013, 23, 2491−2495.
- Sun, G., Wang, E., Wang, H., Xiao, Z., Qing Li, Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores, Materials and Design, 2018, 160, 1117–1136.
- Zhu, Y., Sun, Y., Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration, International Journal of Impact Engineering, 2020, 139, 103508.
- Liu, Q., Fu, J., Wang, J., Ma, J., Chen, H., Li, Q., Hui, D., Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam, Composites Part B, 2017, 130, 236-247.
- Vignjevi, R., Campbell, J., Hughes, K., Orłowski, M., Garce, S., Withers, P., Reed, J., Soft body impact resistance of composite foam core sandwich panels with unidirectional corrugated and tubular reinforcements, International Journal of Impact Engineering, 2019, 132, 103320.
- Lia, Z., Zheng, Z., Yu, J., Lu, F., Deformation and perforation of sandwich panels with aluminum-foam core at elevated temperatures, International Journal of Impact Engineering, 2017, 109, 366-377.
- Xi, H., Tang, L., Luo, S., Liu, Y., Jiang, Z. Liu, Z., A numerical study of temperature effect on the penetration of aluminum foam sandwich panels under impact, Composites Part B, 2017, 130, 217-229.
- Liu, C., Zhang, Y.X., Ye, L., High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core, International Journal of Impact Engineering, 2017, 100, 139-153,
- Önal, T., TEMİZ, Ş., Experimental Investigation of Impact Behavior of Balsa Core Sandwich Composites, El-Cezerî Journal of Science and Engineering, 2021, 8(1), 333-345.
- Xiong, J., Maa, L., Stocchi, A., Yang, J., Wua, L., Pan, S., Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores, Composite Structures, 2014, 108, 234-242.
- Sun, G., Chen, D., Wang, H., Hazell, P.J., Li, Q., High-velocity impact behavior of aluminium honeycomb sandwich panels with different structural configurations, International Journal of Impact Engineering, 2018, 122, 119-136.
- Zhang, D., Jiang, D., Fei, Q., Wu, S., Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact, Finite Elements in Analysis and Design, 2016, 117-118, 21-30.
- Wang, J., Shi, C., Yang, N., Sun, H., Liu, Y., Song B., Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body, Composite Structures, 2018, 184, 1189-1196.
- Li, S., Li, XX., Wang, Z., Wu, G., Lu, G., Zhao L., Sandwich panels with layered graded aluminum honeycomb cores under blast loading, Composite Structures, 2017, 173, 242-254.
- Subaşı, S., Çetin, V., Şamandar, A., The Effect of GFRP Plate and Core Thickness on Mechanical Properties in Composite Panels, El-Cezerî Journal of Science and Engineering, 2017, 4(2), 135-145.
- Sarvestani, H.Y., Akbarzadeha, A.H., Niknama, H., Hermenean, K., 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Composite Structures, 2018, 200, 886-909.
- Zhang, P., Cheng, Y., Liu, J., Li , Y., Zhang, C., Hou, H., Wang, C., Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading, Composites Part B, 2016, 105, 67-81.
- Shu, C., Zhao, S., Hou, S., Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading, Thin-Walled Structures, 2018,133, 42-51.
- Taghizadeh, S.A., Naghdinasab, M., Madadi, H., Farrokhabadi, A., Investigation of novel multi-layer sandwich panels under quasi-static indentation loading using experimental and numerical analyses, Thin–Walled Structures, 2021, 160, 107326.
- Xiong J., Maa, L., Pan, S., Wua, L., Papadopoulos, J., Vaziri, Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores, A., Acta Materialia, 2012, 60 1455-1466.
- Qi, G., Ma, L., Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts, Composite Structures, 2018, 187, 336-343.
- Wu, X., Xiao, K., Yin, Q., Zhong, F., Huang, C., Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core, International Journal of Mechanical Sciences, 2018, 138-139, 467-475.
- Rong, Y., Liu, J., Luo, W., He, W., Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels, Composites Part B, 2018, 152, 324-335.