Akıllı Hayvan Barınak Sistemi Tasarımı ve Etmen Tabanlı Simülasyonu
Year 2022,
, 1375 - 1387, 31.12.2022
Sevcan Emek
,
Emir Tartar
Abstract
Bu çalışmanın amacı, sokak hayvanları için kontrollü su ve gıda ihtiyaçlarını karşılamaya yarayacak akıllı bir hayvan barınak sistemi tasarlamaktır. Bu çalışmada sistemin fiziksel modeli oluşturulmakta ve bu sistemi optimize etmeye yarayacak bir simülasyon uygulaması önerilmektedir. Sistemin fiziksel model tasarımında Raspberry Pi kiti kullanılmaktadır. Bu kit, nesnelerin interneti (Internet of Things - IoT) ile ilişkili olarak elektronik elemanların Pyhton programlama ile birlikte yürütülmesini bu çalışmada sağlamaktadır. Sistem prototipi su ve gıda deposu (tank) üzerine kuruludur. Sistemde su ve gıda doluluk oranları negatif geri beslemeli kontrol mekanizması ile çalışmaktadır. Sistem su ve gıda kaplarındaki kontrolünün yanında, prototipteki su ve gıda depolarındaki oranlar Raspberry Pi tarafından sensörlerden gelen verilere göre ölçülmektedir. Veriler TCP/IP soket programlama ile verilerin toplandığı sunucuya gönderilmektedir. TCP/IP programı ile sunucuya gelen veriler veri tabanında saklanmaktadır. Ölçülen bu veriler web ortamında da takip edilmektedir. Önerilen bu sistemin geliştirilmesine yönelik etmen tabanlı modelleme yaklaşımı kullanılarak bir simülasyon çalışması önerilmektedir. Sistemin etmen tabanlı simülasyon uygulamasında iki ayrı etmen sınıfı tanımlanmaktadır. Etmenler arasındaki etkileşimler deneysel çalışmalarda parametre ayarlamaları ile gözlemlenebilmektedir. Bu çalışmanın, sokak hayvanlarına fayda sağlayabilme ve belediyeler gibi ilgili kurumlar tarafından kullanılabilme potansiyeline sahip olduğu düşünülmektedir.
References
- Information Resources Management Association, Smart Technologies: Breakthroughs in Research and Practice (1st. ed.), 2017, IGI Global, USA.
- Sayama, H., Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, Milne Library State University of New York at Geneseo, 2015.
- Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach (Third ed.), 2010, Upper Saddle River, New Jersey: Prentice Hall.
- Emek, S., Kendini Uyarlayabilen Sistemlerin Global Davranışlarının Etmen Tabanlı Sistemlerle Modellenmesi ve Simülasyonu, Doktora Tezi, Ege Üniversitesi, 2018.
- Macias-Escriva, F. D., Haber, R., del Toro, R. and Hernandez, V., Self-adaptive systems: A survey of current approaches, research challenges and applications, Expert Systems with Applications 40:7267–7279 pp, 2013.
- Raspberry Pi. https://www.raspberrypi.org/, Erişim Tarihi: 20 Mayıs 2022.
- Klügl, F. & Bazzan, A.L.C., Agent-Based Modeling and Simulation. Association for the Advancement of Artificial Intelligence, 29-40, 2012.
- Bandini, S., Manzoni, S.T. & Vizzari, G., Agent Based Modeling and Simulation: An Informatics Perspective. Journal of Artificial Societies and Social Simulation, vol. 12, 2009.
- Macal, C. M. & North, M. J., Tutorial on agent-based modeling and simulation. Journal of simulation, 4(3):151-162, 2010.
- Bonabeau, E., Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7280-7287, 2002.
- Negahban, A., Yılmaz, L., Agent-based simulation applications in marketing research: an integrated review, Journal of Simulation, 8: 129-142 pp, 2014.
- Odell, J., Parunak, H., Fleisher, M. and Brueckner, S., Modeling Agents and Their Environment. In: Giunchiglia F., Odell J., Weiß G. (eds) Agent-Oriented Software Engineering III. AOSE 2002. Lecture Notes in Computer Science, vol 2585, 2003, Springer, Berlin, Heidelberg.
- North, M. J., Collier, N. T., Ozik, J., Tatara, E., Altaweel, M., Macal, C. M., Bragen, M. & Sydelko, P., Complex Adaptive Systems Modeling with Repast Simphony. Complex Adaptive Systems Modeling, Springer, Heidelberg, FRG, 2013.
- The Repast Suite. https://repast.github.io/, Erişim Tarihi: 20 Mayıs 2022.
- Bora, Ş. & Emek, S., Agent-based Modeling and Simulation of Biological Systems. Computer Simulation, Book Chapter, IntechOpen, 2018. ISBN 978-953-51-6345-9.
Modeling and Agent Based Simulation of the Smart Animal Kennel System
Year 2022,
, 1375 - 1387, 31.12.2022
Sevcan Emek
,
Emir Tartar
Abstract
The aim of this study is to model a smart animal kennel system that will provide controlled water and food needs for stray animals. In this study, the physical model of the system is created and a simulation application is proposed to optimize this system. Raspberry Pi kit is used in the physical model design of the system. This kit provides the execution of electronic elements in conjunction with Python programming in relation to the Internet of Things (IoT) in this study. The system prototype is based on a water and food tank. The water and food occupancy rates in the system work with a negative feedback control mechanism. In addition to the control of the system in water and food containers, the rates in the water and food tanks in the prototype are measured with the Raspberry Pi according to the data obtained from the sensors. The data is sent to the server with TCP/IP socket programming. The data to the server with the TCP/IP program takes place in the database. These measured data can be observed on the web platform. A simulation study is presented using agent-based modeling approach for the development of this proposed system. Two different agent classes are defined in the agent-based simulation application of the system. Interactions between agents can be observed in experimental studies with parameter tuning. It is thought that this study has the potential to benefit stray animals and to be used by relevant institutions such as municipalities.
References
- Information Resources Management Association, Smart Technologies: Breakthroughs in Research and Practice (1st. ed.), 2017, IGI Global, USA.
- Sayama, H., Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, Milne Library State University of New York at Geneseo, 2015.
- Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach (Third ed.), 2010, Upper Saddle River, New Jersey: Prentice Hall.
- Emek, S., Kendini Uyarlayabilen Sistemlerin Global Davranışlarının Etmen Tabanlı Sistemlerle Modellenmesi ve Simülasyonu, Doktora Tezi, Ege Üniversitesi, 2018.
- Macias-Escriva, F. D., Haber, R., del Toro, R. and Hernandez, V., Self-adaptive systems: A survey of current approaches, research challenges and applications, Expert Systems with Applications 40:7267–7279 pp, 2013.
- Raspberry Pi. https://www.raspberrypi.org/, Erişim Tarihi: 20 Mayıs 2022.
- Klügl, F. & Bazzan, A.L.C., Agent-Based Modeling and Simulation. Association for the Advancement of Artificial Intelligence, 29-40, 2012.
- Bandini, S., Manzoni, S.T. & Vizzari, G., Agent Based Modeling and Simulation: An Informatics Perspective. Journal of Artificial Societies and Social Simulation, vol. 12, 2009.
- Macal, C. M. & North, M. J., Tutorial on agent-based modeling and simulation. Journal of simulation, 4(3):151-162, 2010.
- Bonabeau, E., Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7280-7287, 2002.
- Negahban, A., Yılmaz, L., Agent-based simulation applications in marketing research: an integrated review, Journal of Simulation, 8: 129-142 pp, 2014.
- Odell, J., Parunak, H., Fleisher, M. and Brueckner, S., Modeling Agents and Their Environment. In: Giunchiglia F., Odell J., Weiß G. (eds) Agent-Oriented Software Engineering III. AOSE 2002. Lecture Notes in Computer Science, vol 2585, 2003, Springer, Berlin, Heidelberg.
- North, M. J., Collier, N. T., Ozik, J., Tatara, E., Altaweel, M., Macal, C. M., Bragen, M. & Sydelko, P., Complex Adaptive Systems Modeling with Repast Simphony. Complex Adaptive Systems Modeling, Springer, Heidelberg, FRG, 2013.
- The Repast Suite. https://repast.github.io/, Erişim Tarihi: 20 Mayıs 2022.
- Bora, Ş. & Emek, S., Agent-based Modeling and Simulation of Biological Systems. Computer Simulation, Book Chapter, IntechOpen, 2018. ISBN 978-953-51-6345-9.