Research Article
BibTex RIS Cite

Doğrusal Olmayan Malzemeler için Sonlu Eleman Çözümündeki Dönüşüm Bozukluklarının Giderilmesi

Year 2020, , 1140 - 1151, 30.09.2020
https://doi.org/10.31202/ecjse.727463

Abstract

Sonlu elemanlar yönteminde fiziksel eleman ile mastır eleman arasında yapılan koordinat dönüşümünde meydana gelen dönüşüm bozuklukları, mastır elemanın kenar noktalarının fiziksel elemandaki gibi dönüştürülmesiyle giderilir. Bu çalışmada, mastır elemanın kenar noktaları ayarlanabilir biçimde geliştirilmiş serendip elemanlar kullanılarak elde edilen sonlu eleman algoritması sunulmaktadır. Kurulan bu algoritmada, malzeme davranışını içerecek şekilde von Mises akma kriteri ve elastoplastik gerilme-birim uzama ilişkisi mevcuttur. Önerilen bu algoritma, doğrusal olmayan sonlu eleman analizi olup, örneklerle onaması yapılmıştır.

References

  • [1] Nicolas, V.T., Çıtıpıtıoğlu, E., “A general isoparametric finite element program SDRC-SUPERB”, Comput Struct, 1977, 7: 303-313.
  • [2] Çıtıpıtıoğlu, E., “Universal serendipity elements”, Int J Numer Meth Engng, 1983, 19: 803-810.
  • [3] Celia, M.A., Cray. W.G., “An improved isoparametric transformation for finite element analysis”, Int J Numer Methods Eng, 1988, 20: 1443-1459.
  • [4] Utku, M., Çıtıpıtıoğlu, E., Özkan, G., “Isoparametric elements with unequally spaced edge nodes”, Comput Struct, 1991, 41: 455-460.
  • [5] Küçükarslan, S., “Universal serendipity elements with unequally spaced edge nodes”, Yüksek Lisans tezi, ODTÜ, (1995).
  • [6] Utku, M., “An improved transformation for universal serendipity elements”, Comput Struct, 2000, 73: 199-206.
  • [7] Kikuchi, F., Okabe, M., Fujio, H., “Modification of the 8-node serendipity element”, Comput Methods Appl Mech Eng, 1990, 179: 91-109.
  • [8] Ho, S.P., Yeh, Y.L., “The use of 2D enriched elements with bubble functions for finite element analysis”, Comput Struct, 2006, 84: 2081-2091.
  • [9] El-Mezaini, N., Çıtıpıtıoğlu, E., “Finite element analysis of prestressed and reinforced structures”, J Struct Eng, 1991, 117: 2851-2864.
  • [10] De Bellis, M.L., Wriggers, P., Hudobivnik B., “Serendipity virtual element formulation for nonlinear elasticity”, Comput Struct, 2019, 223: 106094. [11] Küçükarslan, S., Demir, A., “Correction of node mapping distortions using universal serendipity elements in dynamical problems”, Struct Eng Mech, 2011, 40: 245-256.
  • [12] Owen, D.R.J., Hinton, E., “Finite Elements in Plasticity: Theory And Practice”, Swansea, Pineridge Press, (1980).
  • [13] Chen, W.F., Han, D.J., “Plasticity for Structural Engineers”, Springer, New York, (1988).
  • [14] Zienkiewicz, O.C., Valliappan, S., King , I.P., “Elasto-plastic solutions of engineering problems; initial stress finite element approach”, Int J Numer Methods Eng, 1969, 1: 75-100.
  • [15] Hodge, P.G., White, G.N., “ A quantitative comparison of flow and deformation theories of plasticity”, J Appl Mech, 1950, 17:180-184.
  • [16] Timoshenko, S.P., Goodier, J.N., “Theory of elasticity”, McGraw Hill, NY, (1970).
  • [17] Sadd, M., “Elasticity, Theory, Applications, and Numerics”, Academic Press, Burlington, (2014).
Year 2020, , 1140 - 1151, 30.09.2020
https://doi.org/10.31202/ecjse.727463

Abstract

References

  • [1] Nicolas, V.T., Çıtıpıtıoğlu, E., “A general isoparametric finite element program SDRC-SUPERB”, Comput Struct, 1977, 7: 303-313.
  • [2] Çıtıpıtıoğlu, E., “Universal serendipity elements”, Int J Numer Meth Engng, 1983, 19: 803-810.
  • [3] Celia, M.A., Cray. W.G., “An improved isoparametric transformation for finite element analysis”, Int J Numer Methods Eng, 1988, 20: 1443-1459.
  • [4] Utku, M., Çıtıpıtıoğlu, E., Özkan, G., “Isoparametric elements with unequally spaced edge nodes”, Comput Struct, 1991, 41: 455-460.
  • [5] Küçükarslan, S., “Universal serendipity elements with unequally spaced edge nodes”, Yüksek Lisans tezi, ODTÜ, (1995).
  • [6] Utku, M., “An improved transformation for universal serendipity elements”, Comput Struct, 2000, 73: 199-206.
  • [7] Kikuchi, F., Okabe, M., Fujio, H., “Modification of the 8-node serendipity element”, Comput Methods Appl Mech Eng, 1990, 179: 91-109.
  • [8] Ho, S.P., Yeh, Y.L., “The use of 2D enriched elements with bubble functions for finite element analysis”, Comput Struct, 2006, 84: 2081-2091.
  • [9] El-Mezaini, N., Çıtıpıtıoğlu, E., “Finite element analysis of prestressed and reinforced structures”, J Struct Eng, 1991, 117: 2851-2864.
  • [10] De Bellis, M.L., Wriggers, P., Hudobivnik B., “Serendipity virtual element formulation for nonlinear elasticity”, Comput Struct, 2019, 223: 106094. [11] Küçükarslan, S., Demir, A., “Correction of node mapping distortions using universal serendipity elements in dynamical problems”, Struct Eng Mech, 2011, 40: 245-256.
  • [12] Owen, D.R.J., Hinton, E., “Finite Elements in Plasticity: Theory And Practice”, Swansea, Pineridge Press, (1980).
  • [13] Chen, W.F., Han, D.J., “Plasticity for Structural Engineers”, Springer, New York, (1988).
  • [14] Zienkiewicz, O.C., Valliappan, S., King , I.P., “Elasto-plastic solutions of engineering problems; initial stress finite element approach”, Int J Numer Methods Eng, 1969, 1: 75-100.
  • [15] Hodge, P.G., White, G.N., “ A quantitative comparison of flow and deformation theories of plasticity”, J Appl Mech, 1950, 17:180-184.
  • [16] Timoshenko, S.P., Goodier, J.N., “Theory of elasticity”, McGraw Hill, NY, (1970).
  • [17] Sadd, M., “Elasticity, Theory, Applications, and Numerics”, Academic Press, Burlington, (2014).
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Yavuz 0000-0001-6693-9086

Semih Küçükarslan

Publication Date September 30, 2020
Submission Date April 27, 2020
Acceptance Date June 17, 2020
Published in Issue Year 2020

Cite

IEEE M. Yavuz and S. Küçükarslan, “Doğrusal Olmayan Malzemeler için Sonlu Eleman Çözümündeki Dönüşüm Bozukluklarının Giderilmesi”, ECJSE, vol. 7, no. 3, pp. 1140–1151, 2020, doi: 10.31202/ecjse.727463.