Research Article
BibTex RIS Cite

Permanent Magnet Flux Switching Torque Performance Indicator

Year 2021, , 582 - 591, 31.05.2021
https://doi.org/10.31202/ecjse.842739

Abstract

Flux switching machine (FSM) offer advantages such as rotor robustness and simple driving circuit compared to competing machine. This paper attempts to process the torque, volume and current information from 35 latest Permanent Magnet (PM) FSM publication into a standardized Torque Performance Indicator (TPI), which are torque density, torque constant, torque constant density and torque-magnet ratio. The distribution median shows that torque density, torque constant, torque constant density and torque-magnet ratio are 23.24kNm/m3, 0.43Nm/A, 0.616Nkm/Am3 and 30.79Nm/kg respectively. Among many design variation, outer rotor configuration produces good values as overall in the TPI. This information can be used to guide the machine designer to compare and compete based on the standardized TPI.

Supporting Institution

Universiti Tun Hussein Onn Malaysia (UTHM)

Project Number

Research Fund E15501

Thanks

The authors would like to thank the editor and anonymous reviewers for their comments that help improve the quality of this work. The authors would like to thank the Ministry of Education Malaysia, Universiti Tun Hussein Onn Malaysia (UTHM) under Research Fund E15501 and Universiti Teknikal Malaysia Melaka (UTeM) for technical and financial support for this research.

References

  • [1] Global EV Outlook 2018, 2018. OECD, 2018.
  • [2] I. López, E. Ibarra, A. Matallana, J. Andreu, and I. Kortabarria, “Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges,” Renew. Sustain. Energy Rev., 114, May, 2019, 109336.
  • [3] AAB, “Technical note - IEC 60034-30-1 standard on efficiency classes for low voltage AC motors.”
  • [4] J. F. Miller and D. Howell, “The EV everywhere grand challenge,” World Electr. Veh. J., 2013.
  • [5] J. J. H. Paulides, “Reluctance machines : facing the challenges of future electrical power trains,” 2014, 2014.
  • [6] C. Pollock and M. Wallace, “Flux switching motor, a DC motor without magnets or brushes,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., 3, 1999, 1980–1987.
  • [7] C. Pollock et al., “Flux Switching Motors for Automotive Applications,” 2003, 242–249.
  • [8] R. N. Firdaus Kashfi Raja Othman et al., “Torque constant density in different type of double stator permanent magnet brushless DC motor,” Prog. Electromagn. Res. M, 66, March, 2018, 127–142.
  • [9] A. Trianni, E. Cagno, and D. Accordini, “A review of energy efficiency measures within electric motors systems,” Energy Procedia, 158, 2019, 3346–3351.
  • [10] R. Kumar, E. Sulaiman, H. A. Soomro, S. H. A. Musavi, G. Kumar, and I. A. Sohu, “Electromagnetic analysis of outer rotor permanent magnet flux switching machine for downhole application,” ICIEECT 2017 - Int. Conf. Innov. Electr. Eng. Comput. Technol. 2017, Proc., 2017.
  • [11] E. Sulaiman, G. M. Romalan, and N. W. A. Ghani, “Design improvement of flux switching permanent magnet using combined local and global method,” ICCEREC 2016 - Int. Conf. Control. Electron. Renew. Energy, Commun. 2016, Conf. Proc., 1, 2017, 214–219.
  • [12] M. Ahmad, E. Sulaiman, Z. Haron, F. Khan, and M. Mazlan, “Analysis of a New Dual Excitation Flux Switching Machine with Outer- Rotor Configuration for Direct Drive EV,” 695, 2015, 787–791.
  • [13] E. Bin Sulaiman and A. M. Arab, “Fundamental Study Of Outer-Rotor Hybrid Excitation Flux Switching Generator For Grid Connected Wind Turbine Applications,” 2015 IEEE Student Conf. Res. Dev., 2015, 716–720.
  • [14] E. I. Mbadiwe and E. Sulaiman, “Improved design of outer rotor machine in PM technology for motor bike drive application,” 2018, 2018.
  • [15] C. H. T. Lee, J. L. Kirtley, and M. Angle, “A Partitioned-Stator Flux-Switching Permanent-Magnet Machine with Mechanical Flux Adjusters for Hybrid Electric Vehicles,” IEEE Trans. Magn., 53, 11, 2017.
  • [16] E. Mbadiwe and E. Sulaiman, “Flux switching permanent magnet motor using segmented outer rotor structure for electric scooter,” Indones. J. Electr. Eng. Comput. Sci., 6, 2, 2017, 379–386.
  • [17] Y. Du, C. Zou, X. Zhu, C. Zhang, and F. Xiao, “A Full-Pitched Flux-Switching Permanent-Magnet Motor,” IEEE Trans. Appl. Supercond., 26, 4, 2016, 1–5.
  • [18] F. Azhar and N. A. M. Nasir, “Comparison and Prediction of Performance Index of Permanent Magnet Linear Motor,” 2016 IEEE Int. Conf. Power Energy, 2016, 558–563.
  • [19] F. Azhar, H. Wakiwaka, K. Tashiro, and M. Nirei, “Design and Performance Index Comparison of the Permanent Magnet Linear Motor,” 43, July, 2015, 101–108.
  • [20] M. Aryanezhad and E. Ostadaghaee, “A Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles,” 3, 2015, 65–71.
  • [21] A. A. Adly and A. Huzayyin, “The impact of demagnetization on the feasibility of permanent magnet synchronous motors in industry applications,” J. Adv. Res., 17, 2019, 103–108.
  • [22] L. I. Jusoh, E. Sulaiman, R. Kumar, F. S. Bahrim, and M. F. Omar, “Preliminary studies of various rotor pole number for permanent magnet flux switching machines (PMFSM),” Int. J. Appl. Eng. Res., 12, 7, 2017, 1377–1382.
  • [23] L. I. B. Jusoh, E. Sulaiman, R. Kumar, and F. S. Bahrim, “Design and performance of 8slot-12pole permanent magnet flux switching machines for electric bicycle application,” Int. J. Power Electron. Drive Syst., 8, 1, 2017, 248–254.
  • [24] W. Xu, J. Zhu, Y. Zhang, Y. Guo, and G. Lei, “New axial laminated-structure flux-switching permanent magnet machine with 6/7 poles,” IEEE Trans. Magn., 47, 10, 2011, 2823–2826.
  • [25] X. Xue, W. Zhao, J. Zhu, G. Liu, X. Zhu, and M. Cheng, “Design of five-phase modular flux-switching permanent-magnet machines for high reliability applications,” IEEE Trans. Magn., 49, 7, 2013, 3941–3944.
  • [26] M. Z. Ahmad, E. Sulaiman, and T. Kosaka, “Analysis of high torque and power densities outer-rotor PMFSM with DC excitation coil for in-wheel direct drive,” J. Magn., 20, 3, 2015, 265–272.
  • [27] W. Z. Fei, J. X. Shen, C. F. Wang, and P. C. K. Luk, “Design and analysis of a new outer-rotor permanent-magnet flux-switching machine for electric vehicle propulsion,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 30, 1, 2011, 48–61.
  • [28] R. Kumar, E. Sulaiman, H. A. Soomro, S. H. A. Musavi, G. Kumar, and I. A. Sohu, “Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application,” Int. J. Power Electron. Drive Syst., 8, 1, 2017, 231–238.
  • [29] S. Khalidah, M. Z. Ahmad, G. M. Romalan, and M. Z. M. Arap, “Comparative analysis of double stator permanent magnet flux-switching machines with segmented inner stator and non-segmented inner stator,” J. Telecommun. Electron. Comput. Eng., 10, 1–2, 2018, 37–41.
  • [30] C. C. Awah et al., “Comparison of Partitioned Stator Switched Flux Permanent Magnet Machines Having Single- or Double-Layer Windings,” IEEE Trans. Magn., 52, 1, 2016, 0–4.
  • [31] M. Jenal and E. Sulaiman, “Comparative study on a new permanent magnet flux switching machine configuration over segmental and salient rotor structure,” ARPN J. Eng. Appl. Sci., 10, 19, 2015, 8846–8852.
  • [32] S. M. N. S. Othman, M. F. Omar, S. K. Rahimi, and E. Sulaiman, “Elementary analysis of segmental stator flux switching permanent magnet machine,” Int. J. Power Electron. Drive Syst., 9, 3, 2018, 972–978.
  • [33] G. Zhao and W. Hua, “Comparative Study between a Novel Multi-Tooth and a V-Shaped Flux-Switching Permanent Magnet Machines,” IEEE Trans. Magn., 55, 7, 2019, 1–8.
  • [34] M. M. J. Al-Ani and M. L. Jupp, “Switched flux permanent magnet machine with segmanted magnets,” in 8th IET Conference Publications, 2016, 8, PEMD2016, 2016, 1–5.
  • [35] Z. Xiang, L. Quan, and X. Zhu, “A New Partitioned-Rotor Flux-Switching Permanent Magnet Motor with High Torque Density and Improved Magnet Utilization,” IEEE Trans. Appl. Supercond., 26, 4, 2016, 1–5.
  • [36] I. A. Soomro, E. Sulaiman, and H. A. Soomro, “Modular rotor Based Permanent Magnet Flux Switching Machine for Light Weight EV,” 2019, 2019.
  • [37] S. M. N. Bin Syed Othman, H. A. Soomro, E. I. Mbadiwe, M. F. Bin Omar, and E. Bin Sulaiman, “Design and analysis of three phase SegSta 12S-12P permanent magnet flux switching machine,” 2019 2nd Int. Conf. Comput. Math. Eng. Technol. iCoMET 2019, 2019, 1–4.
  • [38] S. M. N. B. S. Othman, H. A. Soomro, E. I. Mbadiwe, M. F. Bin Omar, and E. bin Sulaiman, “Design Optimisation of SegSta 12S-12P Permanent Magnet Flux Switching Machine,” 2019 IEEE Int. Conf. Autom. Control Intell. Syst., June, 2019, 135–138.
  • [39] X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan, “Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method,” IEEE Trans. Magn., 52, 10, 2016, 1–8.

Kalıcı Mıknatıs Akısı Anahtarlama Tork Performansı Gösterge

Year 2021, , 582 - 591, 31.05.2021
https://doi.org/10.31202/ecjse.842739

Abstract

Flux switching machine (FSM), rakip makineye kıyasla rotor sağlamlığı ve basit sürüş devresi gibi avantajlar sunar. Bu makale, tork, hacim ve akım bilgilerini en son 35 Permanent Magnet (PM) FSM yayınından, tork yoğunluğu, tork sabiti, tork sabit yoğunluğu ve tork-mıknatıs oranı olan standartlaştırılmış bir Torque Performance Indicator (TPI) işlemeye çalışmaktadır. Dağılım medyanı, tork yoğunluğu, tork sabiti, tork sabit yoğunluğu ve tork-mıknatıs oranının sırasıyla 23.24kNm / m3, 0.43Nm / A, 0.616Nkm / Am3 ve 30.79Nm / kg olduğunu göstermektedir. Birçok tasarım varyasyonu arasında, dış rotor konfigürasyonu genel olarak TPI'da olduğu gibi iyi değerler üretir. Bu bilgi, makine tasarımcısına standartlaştırılmış TPI'ya göre karşılaştırma ve rekabet etme konusunda rehberlik etmek için kullanılabilir.

Project Number

Research Fund E15501

References

  • [1] Global EV Outlook 2018, 2018. OECD, 2018.
  • [2] I. López, E. Ibarra, A. Matallana, J. Andreu, and I. Kortabarria, “Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges,” Renew. Sustain. Energy Rev., 114, May, 2019, 109336.
  • [3] AAB, “Technical note - IEC 60034-30-1 standard on efficiency classes for low voltage AC motors.”
  • [4] J. F. Miller and D. Howell, “The EV everywhere grand challenge,” World Electr. Veh. J., 2013.
  • [5] J. J. H. Paulides, “Reluctance machines : facing the challenges of future electrical power trains,” 2014, 2014.
  • [6] C. Pollock and M. Wallace, “Flux switching motor, a DC motor without magnets or brushes,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., 3, 1999, 1980–1987.
  • [7] C. Pollock et al., “Flux Switching Motors for Automotive Applications,” 2003, 242–249.
  • [8] R. N. Firdaus Kashfi Raja Othman et al., “Torque constant density in different type of double stator permanent magnet brushless DC motor,” Prog. Electromagn. Res. M, 66, March, 2018, 127–142.
  • [9] A. Trianni, E. Cagno, and D. Accordini, “A review of energy efficiency measures within electric motors systems,” Energy Procedia, 158, 2019, 3346–3351.
  • [10] R. Kumar, E. Sulaiman, H. A. Soomro, S. H. A. Musavi, G. Kumar, and I. A. Sohu, “Electromagnetic analysis of outer rotor permanent magnet flux switching machine for downhole application,” ICIEECT 2017 - Int. Conf. Innov. Electr. Eng. Comput. Technol. 2017, Proc., 2017.
  • [11] E. Sulaiman, G. M. Romalan, and N. W. A. Ghani, “Design improvement of flux switching permanent magnet using combined local and global method,” ICCEREC 2016 - Int. Conf. Control. Electron. Renew. Energy, Commun. 2016, Conf. Proc., 1, 2017, 214–219.
  • [12] M. Ahmad, E. Sulaiman, Z. Haron, F. Khan, and M. Mazlan, “Analysis of a New Dual Excitation Flux Switching Machine with Outer- Rotor Configuration for Direct Drive EV,” 695, 2015, 787–791.
  • [13] E. Bin Sulaiman and A. M. Arab, “Fundamental Study Of Outer-Rotor Hybrid Excitation Flux Switching Generator For Grid Connected Wind Turbine Applications,” 2015 IEEE Student Conf. Res. Dev., 2015, 716–720.
  • [14] E. I. Mbadiwe and E. Sulaiman, “Improved design of outer rotor machine in PM technology for motor bike drive application,” 2018, 2018.
  • [15] C. H. T. Lee, J. L. Kirtley, and M. Angle, “A Partitioned-Stator Flux-Switching Permanent-Magnet Machine with Mechanical Flux Adjusters for Hybrid Electric Vehicles,” IEEE Trans. Magn., 53, 11, 2017.
  • [16] E. Mbadiwe and E. Sulaiman, “Flux switching permanent magnet motor using segmented outer rotor structure for electric scooter,” Indones. J. Electr. Eng. Comput. Sci., 6, 2, 2017, 379–386.
  • [17] Y. Du, C. Zou, X. Zhu, C. Zhang, and F. Xiao, “A Full-Pitched Flux-Switching Permanent-Magnet Motor,” IEEE Trans. Appl. Supercond., 26, 4, 2016, 1–5.
  • [18] F. Azhar and N. A. M. Nasir, “Comparison and Prediction of Performance Index of Permanent Magnet Linear Motor,” 2016 IEEE Int. Conf. Power Energy, 2016, 558–563.
  • [19] F. Azhar, H. Wakiwaka, K. Tashiro, and M. Nirei, “Design and Performance Index Comparison of the Permanent Magnet Linear Motor,” 43, July, 2015, 101–108.
  • [20] M. Aryanezhad and E. Ostadaghaee, “A Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles,” 3, 2015, 65–71.
  • [21] A. A. Adly and A. Huzayyin, “The impact of demagnetization on the feasibility of permanent magnet synchronous motors in industry applications,” J. Adv. Res., 17, 2019, 103–108.
  • [22] L. I. Jusoh, E. Sulaiman, R. Kumar, F. S. Bahrim, and M. F. Omar, “Preliminary studies of various rotor pole number for permanent magnet flux switching machines (PMFSM),” Int. J. Appl. Eng. Res., 12, 7, 2017, 1377–1382.
  • [23] L. I. B. Jusoh, E. Sulaiman, R. Kumar, and F. S. Bahrim, “Design and performance of 8slot-12pole permanent magnet flux switching machines for electric bicycle application,” Int. J. Power Electron. Drive Syst., 8, 1, 2017, 248–254.
  • [24] W. Xu, J. Zhu, Y. Zhang, Y. Guo, and G. Lei, “New axial laminated-structure flux-switching permanent magnet machine with 6/7 poles,” IEEE Trans. Magn., 47, 10, 2011, 2823–2826.
  • [25] X. Xue, W. Zhao, J. Zhu, G. Liu, X. Zhu, and M. Cheng, “Design of five-phase modular flux-switching permanent-magnet machines for high reliability applications,” IEEE Trans. Magn., 49, 7, 2013, 3941–3944.
  • [26] M. Z. Ahmad, E. Sulaiman, and T. Kosaka, “Analysis of high torque and power densities outer-rotor PMFSM with DC excitation coil for in-wheel direct drive,” J. Magn., 20, 3, 2015, 265–272.
  • [27] W. Z. Fei, J. X. Shen, C. F. Wang, and P. C. K. Luk, “Design and analysis of a new outer-rotor permanent-magnet flux-switching machine for electric vehicle propulsion,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 30, 1, 2011, 48–61.
  • [28] R. Kumar, E. Sulaiman, H. A. Soomro, S. H. A. Musavi, G. Kumar, and I. A. Sohu, “Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application,” Int. J. Power Electron. Drive Syst., 8, 1, 2017, 231–238.
  • [29] S. Khalidah, M. Z. Ahmad, G. M. Romalan, and M. Z. M. Arap, “Comparative analysis of double stator permanent magnet flux-switching machines with segmented inner stator and non-segmented inner stator,” J. Telecommun. Electron. Comput. Eng., 10, 1–2, 2018, 37–41.
  • [30] C. C. Awah et al., “Comparison of Partitioned Stator Switched Flux Permanent Magnet Machines Having Single- or Double-Layer Windings,” IEEE Trans. Magn., 52, 1, 2016, 0–4.
  • [31] M. Jenal and E. Sulaiman, “Comparative study on a new permanent magnet flux switching machine configuration over segmental and salient rotor structure,” ARPN J. Eng. Appl. Sci., 10, 19, 2015, 8846–8852.
  • [32] S. M. N. S. Othman, M. F. Omar, S. K. Rahimi, and E. Sulaiman, “Elementary analysis of segmental stator flux switching permanent magnet machine,” Int. J. Power Electron. Drive Syst., 9, 3, 2018, 972–978.
  • [33] G. Zhao and W. Hua, “Comparative Study between a Novel Multi-Tooth and a V-Shaped Flux-Switching Permanent Magnet Machines,” IEEE Trans. Magn., 55, 7, 2019, 1–8.
  • [34] M. M. J. Al-Ani and M. L. Jupp, “Switched flux permanent magnet machine with segmanted magnets,” in 8th IET Conference Publications, 2016, 8, PEMD2016, 2016, 1–5.
  • [35] Z. Xiang, L. Quan, and X. Zhu, “A New Partitioned-Rotor Flux-Switching Permanent Magnet Motor with High Torque Density and Improved Magnet Utilization,” IEEE Trans. Appl. Supercond., 26, 4, 2016, 1–5.
  • [36] I. A. Soomro, E. Sulaiman, and H. A. Soomro, “Modular rotor Based Permanent Magnet Flux Switching Machine for Light Weight EV,” 2019, 2019.
  • [37] S. M. N. Bin Syed Othman, H. A. Soomro, E. I. Mbadiwe, M. F. Bin Omar, and E. Bin Sulaiman, “Design and analysis of three phase SegSta 12S-12P permanent magnet flux switching machine,” 2019 2nd Int. Conf. Comput. Math. Eng. Technol. iCoMET 2019, 2019, 1–4.
  • [38] S. M. N. B. S. Othman, H. A. Soomro, E. I. Mbadiwe, M. F. Bin Omar, and E. bin Sulaiman, “Design Optimisation of SegSta 12S-12P Permanent Magnet Flux Switching Machine,” 2019 IEEE Int. Conf. Autom. Control Intell. Syst., June, 2019, 135–138.
  • [39] X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan, “Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method,” IEEE Trans. Magn., 52, 10, 2016, 1–8.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mohd Firdaus Mohd Ab Halim 0000-0001-6965-9143

Erwan Sulaiman This is me 0000-0003-0303-6191

Project Number Research Fund E15501
Publication Date May 31, 2021
Submission Date December 18, 2020
Acceptance Date February 15, 2021
Published in Issue Year 2021

Cite

IEEE M. F. Mohd Ab Halim and E. Sulaiman, “Permanent Magnet Flux Switching Torque Performance Indicator”, ECJSE, vol. 8, no. 2, pp. 582–591, 2021, doi: 10.31202/ecjse.842739.