Microstructural Characterization and Corrosion-Resistance of Borided Rebar
Year 2021,
, 1135 - 1148, 30.09.2021
Tayfun Uygunoğlu
,
İbrahim Güneş
,
Atila Gürhan Çelik
,
Emriye Çınar
Abstract
he serviceability and ultimate strength of concrete elements within reinforced structures are affected negatively due to corrosion of steel bars. In the present paper, investigations were carried out to study the corrosion behavior of protected low carbon ribbed reinforcing steel with boron in concrete. The ribbed steel bars were in size of Ø12 and Ø14, and they were coated with boron. The coating process was carried out at 800, 900 and 1000 oC for 2 h and 4 h, respectively. Depending on the boriding parameter the boride layer thickness on the surface of borided rebars ranged from 32.58 μm and 213.74 μm. After boriding, the rebars were embedded into the concrete and exposed to rapid corrosion test. The results show that the corrosion rate and cross section loss of protected steel bars decreases when compared to unprotected rebars. Corrosion beginning time of borided rebars delayed about 2 times when compared to plain rebar. Boride layers reduced the corrosion rate of the reinforcements by 2.39 to 10.65 times and the section losses of the reinforcements by 2.54 to 4.72 times depending on the boriding temperature and duration.
Supporting Institution
Afyon Kocatepe University
Project Number
18.KARIYER.209
References
- [1] Dong, Z., Gang, W., Xu, Y. “Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment”, Construction and Bulding Materials,115, pp. 277-284, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.052
- [2] Du, F., Jin, Z., Xiong, C., Yu, Y., Fan, J. “Effects of Transverse Crack on Chloride Ions Diffusion and Steel Bars Corrosion Behavior in Concrete under Electric Acceleration”, Materials, 12(15), pp. 2481-2500, 2019. https://doi.org/10.3390/ma12152481
- [3] Xi, X., Yang, S. “Time to surface cracking and crack width of reinforced concrete structures under corrosion of multiple rebars”, Construction and Bulding Materials, 155, pp, 114-125, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.051
- [4] Chen, Z.J. “Effect of reinforcement corrosion on the serviceability of reinforced concrete structures”, MSc thesis, Department of Civil Engineering, University of Dundee, Dundee, Scotland. 2004.
- [5] Jaffer, S.J., Hansson, C.M. “Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions”, Cement and Concrete Research, 39, pp. 116–125, 2009.
https://doi.org/10.1016/j.cemconres.2008.11.001
- [6] Venkatesan, P., Palaniswamy, N., Rajagopal K. “Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment”, Progress in Organic Coatings, 56, Vo. 1, pp. 8-12, 2006. https://doi.org/10.1016/j.porgcoat.2006.01.011
- [7] Ramniceanu, A., Weyers, R.E., Riffle, J.S. (2008), “Parameters governing corrosion protection efficacy of fusion-bonded epoxy coatings on reinforcing bar”, ACI Mater. J., Vol. 105, No. 5, pp. 459–67, 2008. Doi:10.14359/19975
- [8] Geetha, A., Perumal, P. “Chemical Reaction of Waterproofing Admixtures on the Corrosion Behaviour of Reinforced Cement Concrete”, Asian Journal of Chemistry, 23(11), pp. 5145-5148, 2011.
http://www.asianjournalofchemistry.co.in/Journal/ViewArticle.aspx?ArticleID=23_11_89
- [9] Jamila, H.E, Shriria, A., Boulifb, R., Montemorc, M.F., Ferreirad, M.G.S. “Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor”, Cement and Concrete Composites, 27(6), pp. 671-678, 2005.
https://doi.org/10.1016/j.cemconcomp.2004.09.019
- [10] Ding, L., Poursaee, A. “The impact of sandblasting as a surface modification method on the corrosion behavior of steels in simulated concrete pore solution”, Construction and Bulding Materials, 157, pp. 591-599, 2017. https://doi.org/10.1016/j.conbuildmat.2017.09.140
- [11] Angst, U.M., Elsener, B., Larsen, C.K., Vennesland, Ø. “Chlorideinduced reinforcement corrosion: electro chemical monitoring of initiation stage and chloride threshold values”, Corrosion Science, 53, pp. 1451–1464, 2011. https://doi.org/10.1016/j.corsci.2011.01.025
- [12] Song, D., Ma, A., Sun, W., Jiang, J., Jiang, J., Yang, D., Guo, G. “Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing”, Corrosion Science, 82, pp. 437–441, 2014.
https://doi.org/10.1016/j.corsci.2014.01.034
- [13] Tang, F., Chen, G., Brow, R.K., Volz, J.S., Koenigstein, M.L. “Corrosion resistance and mechanism of steel rebar coated with three types of enamel”, Corrosion Science, 59, pp. 157–168, 2012. https://doi.org/10.1016/j.corsci.2012.02.024
- [14] Varalakshmi, R., Ramaswamy, S.N. “Effect of Anti Corrosive Coatings to Steel - A State of Art Report,” International Journal of Scientific Research, Vol. 5, No. 6, pp. 302-306, 2016. Doi:10.36106/ijsr
- [15] Seneviratne, A.M.G., Sergi, G., Page, C.L. “Performance characteristics of surface coatings applied to concrete for control of reinforcement corrosion”, Construction and Bulding Materials, 14, pp. 55–59, 2000. https://doi.org/10.1016/S0950-0618(00)00011-8
- [16] Uluköy, A., Can, A.Ç. (2006) “Boronizing of steel”, Pamukkale University Journal of Engineering Sciences, Vol. 12, No. 2, pp. 189-198, 2006.
https://dergipark.org.tr/tr/download/article-file/191060
- [17] Mohmmed, J.H. “Wear Rate and Hardness of Boride Low Carbon Steel”, Journal of Engineering, 10(21), pp. 90-98, 2015. https://joe.uobaghdad.edu.iq/index.php/main/article/view/339/294
- [18] Pertek, A., Kulka, M. (2003), “Two-step Treatment Carburizing Followed by Boriding on Medium Carbon Steel”, Surface and Coatings Technology, 173, pp. 309-314, 2003. https://doi.org/10.1016/S0257-8972(03)00522-X
- [19] Erdogan, Gunes, I., (2014), Corrosion Behavior and Microstructure of Borided Tool Steel, Materia-Rio De Janeiro, 20, pp. 523-U279. http://dx.doi.org/10.1590/S1517-707620150002.0052
- [20] Gunes, I, Keddam, M, Chegroune, R, M. Ozcatal. “Growth kinetics of boride layers formed on 99.0% purity nickel”, Bulletin of Materials Science, 38(4), 1113-1118, 2015. https://doi.org/10.1007/s12034-015-0931-y
- [21] Chegroune, R., Keddam, M., Abdellah, Z.N., Ulker, S., Taktak, S., Gunes, I., Characterization and Kinetics of Plasma-Paste-Borided AISI 316 Steel, Materiali In Tehnologije, 50, 263-268, 2016. Doi:10.17222/mit.2015.031
- [22] Suvash, C.P, Adewumi, J.B. “A Review on Reinforcement Corrosion Mechanism and Measurement Methods in Concrete”, Civil Engineering Research Journal, 5(3), pp. 555-661, 2018. Doi:10.19080/CERJ.2018.05.555661
- [23] Imperatore, S., Rinaldi, Z., Drago, Z. “Degradation relationships for the mechanical properties of corroded steel rebars”, Construction and Building Materials, 148, pp. 219-230, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.209
- [24] Gunes I., Kanat, S., “Diffusion Kinetics and Characterization of Borided AISI D6 Steel”, Protection of Metals and Physical Chemistry of Surfaces, 51, 842-846, 2016. https://doi.org/10.1134/S2070205115050111
- [25] Anand, R., Rao, A.B., Manjunarh, K. “Evaluating the effect of corrosion on service life prediction of RC structures – A parametric study”, International Journal of Sustainable Built Environment, 5, No. 2, pp. 587-603, 2016. https://doi.org/10.1016/j.ijsbe.2016.07.001
- [26] Krelling, A.P., Teixeira, F., Costa, C.E., Almeida, E.A.S., Zappelino, B., Milan, J.C.G. “Microabrasive wear behavior of borided steelabraded by SiO2particles”, Journal of Materials Research and Technology, 8(1), pp. 766-776, 2019. https://doi.org/10.1016/j.jmrt.2018.06.004
- [27] Gunes, I. “Wear behaviour of plasma paste boronized of AISI 8620 steel with borax and B2O3 paste mixtures,” J Mater Sci Technol, 29, pp. 662-668, 2013. Doi: 10.1016/j.jmst.2013.04.005
- [28] Ergun, Y., Gunes, I., Erdogan, M., Cankaya, N. “Effect of boriding treatment on the corrosion behavior of steels”, Journal of Nanoscience and Nanotechnology, 17, pp. 8946-8951, 2017. https://doi.org/10.1166/jnn.2017.14251
- [29] Erdogan, M., Gunes, I., Dalar, A. “Investigation of corrosion behavior of borided gear steels”, Transactions of the Indian Institute of Metals, 67, pp. 291–297, 2014. https://doi.org/10.1007/s12666-013-0329-8
- [30] Gunes, I., Erdogan, M., Çelik, A.G. “Corrosion behavior and characterization of plasma nitrided and borided AISI M2 steel,” Materials Research, 17, pp. 612-618, 2014. https://doi.org/10.1590/S1516-14392014005000061.
- [31] Sahin, S. “Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714,” Journal of Materials Processing Technology, 209, pp. 1736-1741, 2009. https://doi.org/10.1016/j.jmatprotec.2008.04.040
- [32] Zhou, H., Wang, W., Wang, K., Xu, L. “Mechanical properties deterioration of high strength steels after high temperature exposure”, Construction and Building Materials, 199, pp. 664-675, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.058
- [33] Cai, Y., Young, B. “Mechanical properties of thin sheet steel after exposure to high temperatures,” Thin-Walled Structures, 142, pp. 460-475, 2019. https://doi.org/10.1016/j.tws.2019.05.011
- [34] Gunes, I. “Investigation of Tribological Properties and Characterization of Borided AISI 420 and AISI 5120 Steels”, Transactions of the Indian Institute of Metals, 67, pp. 359-365, 2014.
https://doi.org/10.1007/s12666-013-0356-5
- [35] Makuch, N., Kulka, M., Dziarski, P., S. Taktak, S. “The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers,” Surface and Coatings Technology, 367, pp. 187-202, 2019. https://doi.org/10.1016/j.surfcoat.2019.03.042
- [36] Uçar, N., Aytar, O.B., Calik, A. “Temperature Behaviour of the Boride Layer of a Low-Carbon Microalloyed Steel”, Materials and Technology, 46, pp. 621-625, 2012.
https://www.dlib.si/stream/URN:NBN:SI:DOC-E0OLQLP8/2c4042fd-72ec-4fc6-ae38-9bc7e5914705/PDF
Borlanmış Donatının Mikroyapısal Karakterizasyonu ve Korozyon Direnci
Year 2021,
, 1135 - 1148, 30.09.2021
Tayfun Uygunoğlu
,
İbrahim Güneş
,
Atila Gürhan Çelik
,
Emriye Çınar
Abstract
Çelik çubukların korozyona uğraması nedeniyle betonarme yapılarda hizmet verilebilirliği ve nihai dayanımı olumsuz etkilenmektedir. Bu çalışmada borlanmış düşük karbonlu inşaat çeliğinin mikroyapı ve korozyon davranışları incelenmiştir. Çalışmada Ø12 ve Ø14 ebatlarında nervürlü çelik çubuklar kullanılmıştır. Çelik donatıların borlama işlemi sırasıyla 800, 900 ve 1000 oC’de 2 ve 4 saat süresince gerçekleştirilmiştir. Borlama parametresine bağlı olarak, borlanmış donatıların yüzeyindeki borür tabakası kalınlığı 32.58 μm ile 213.74 μm arasında değişmektedir. Borlama işleminden sonra, donatılar betona gömülüp hızlı korozyon testine tabi tutulmuştur. Borlanmış çelik çubukların kesit kayıplarının ve korozyon hızlarının borlanmamış çeliğe göre oldukça düşük çıkmıştır. Borlanmış inşaat demirinin korozyon başlama zamanı, borlanmamış inşaat demiri ile karşılaştırıldığında yaklaşık 2 kat gecikmiştir. Borür tabakaları, borlama sıcaklığına ve süresine bağlı olarak donatıların korozyon oranını 2,39 ila 10,65 kat, donatıların kesit kayıplarını ise 2,54 ila 4,72 kat azaltmıştır.
Project Number
18.KARIYER.209
References
- [1] Dong, Z., Gang, W., Xu, Y. “Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment”, Construction and Bulding Materials,115, pp. 277-284, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.052
- [2] Du, F., Jin, Z., Xiong, C., Yu, Y., Fan, J. “Effects of Transverse Crack on Chloride Ions Diffusion and Steel Bars Corrosion Behavior in Concrete under Electric Acceleration”, Materials, 12(15), pp. 2481-2500, 2019. https://doi.org/10.3390/ma12152481
- [3] Xi, X., Yang, S. “Time to surface cracking and crack width of reinforced concrete structures under corrosion of multiple rebars”, Construction and Bulding Materials, 155, pp, 114-125, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.051
- [4] Chen, Z.J. “Effect of reinforcement corrosion on the serviceability of reinforced concrete structures”, MSc thesis, Department of Civil Engineering, University of Dundee, Dundee, Scotland. 2004.
- [5] Jaffer, S.J., Hansson, C.M. “Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions”, Cement and Concrete Research, 39, pp. 116–125, 2009.
https://doi.org/10.1016/j.cemconres.2008.11.001
- [6] Venkatesan, P., Palaniswamy, N., Rajagopal K. “Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment”, Progress in Organic Coatings, 56, Vo. 1, pp. 8-12, 2006. https://doi.org/10.1016/j.porgcoat.2006.01.011
- [7] Ramniceanu, A., Weyers, R.E., Riffle, J.S. (2008), “Parameters governing corrosion protection efficacy of fusion-bonded epoxy coatings on reinforcing bar”, ACI Mater. J., Vol. 105, No. 5, pp. 459–67, 2008. Doi:10.14359/19975
- [8] Geetha, A., Perumal, P. “Chemical Reaction of Waterproofing Admixtures on the Corrosion Behaviour of Reinforced Cement Concrete”, Asian Journal of Chemistry, 23(11), pp. 5145-5148, 2011.
http://www.asianjournalofchemistry.co.in/Journal/ViewArticle.aspx?ArticleID=23_11_89
- [9] Jamila, H.E, Shriria, A., Boulifb, R., Montemorc, M.F., Ferreirad, M.G.S. “Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor”, Cement and Concrete Composites, 27(6), pp. 671-678, 2005.
https://doi.org/10.1016/j.cemconcomp.2004.09.019
- [10] Ding, L., Poursaee, A. “The impact of sandblasting as a surface modification method on the corrosion behavior of steels in simulated concrete pore solution”, Construction and Bulding Materials, 157, pp. 591-599, 2017. https://doi.org/10.1016/j.conbuildmat.2017.09.140
- [11] Angst, U.M., Elsener, B., Larsen, C.K., Vennesland, Ø. “Chlorideinduced reinforcement corrosion: electro chemical monitoring of initiation stage and chloride threshold values”, Corrosion Science, 53, pp. 1451–1464, 2011. https://doi.org/10.1016/j.corsci.2011.01.025
- [12] Song, D., Ma, A., Sun, W., Jiang, J., Jiang, J., Yang, D., Guo, G. “Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing”, Corrosion Science, 82, pp. 437–441, 2014.
https://doi.org/10.1016/j.corsci.2014.01.034
- [13] Tang, F., Chen, G., Brow, R.K., Volz, J.S., Koenigstein, M.L. “Corrosion resistance and mechanism of steel rebar coated with three types of enamel”, Corrosion Science, 59, pp. 157–168, 2012. https://doi.org/10.1016/j.corsci.2012.02.024
- [14] Varalakshmi, R., Ramaswamy, S.N. “Effect of Anti Corrosive Coatings to Steel - A State of Art Report,” International Journal of Scientific Research, Vol. 5, No. 6, pp. 302-306, 2016. Doi:10.36106/ijsr
- [15] Seneviratne, A.M.G., Sergi, G., Page, C.L. “Performance characteristics of surface coatings applied to concrete for control of reinforcement corrosion”, Construction and Bulding Materials, 14, pp. 55–59, 2000. https://doi.org/10.1016/S0950-0618(00)00011-8
- [16] Uluköy, A., Can, A.Ç. (2006) “Boronizing of steel”, Pamukkale University Journal of Engineering Sciences, Vol. 12, No. 2, pp. 189-198, 2006.
https://dergipark.org.tr/tr/download/article-file/191060
- [17] Mohmmed, J.H. “Wear Rate and Hardness of Boride Low Carbon Steel”, Journal of Engineering, 10(21), pp. 90-98, 2015. https://joe.uobaghdad.edu.iq/index.php/main/article/view/339/294
- [18] Pertek, A., Kulka, M. (2003), “Two-step Treatment Carburizing Followed by Boriding on Medium Carbon Steel”, Surface and Coatings Technology, 173, pp. 309-314, 2003. https://doi.org/10.1016/S0257-8972(03)00522-X
- [19] Erdogan, Gunes, I., (2014), Corrosion Behavior and Microstructure of Borided Tool Steel, Materia-Rio De Janeiro, 20, pp. 523-U279. http://dx.doi.org/10.1590/S1517-707620150002.0052
- [20] Gunes, I, Keddam, M, Chegroune, R, M. Ozcatal. “Growth kinetics of boride layers formed on 99.0% purity nickel”, Bulletin of Materials Science, 38(4), 1113-1118, 2015. https://doi.org/10.1007/s12034-015-0931-y
- [21] Chegroune, R., Keddam, M., Abdellah, Z.N., Ulker, S., Taktak, S., Gunes, I., Characterization and Kinetics of Plasma-Paste-Borided AISI 316 Steel, Materiali In Tehnologije, 50, 263-268, 2016. Doi:10.17222/mit.2015.031
- [22] Suvash, C.P, Adewumi, J.B. “A Review on Reinforcement Corrosion Mechanism and Measurement Methods in Concrete”, Civil Engineering Research Journal, 5(3), pp. 555-661, 2018. Doi:10.19080/CERJ.2018.05.555661
- [23] Imperatore, S., Rinaldi, Z., Drago, Z. “Degradation relationships for the mechanical properties of corroded steel rebars”, Construction and Building Materials, 148, pp. 219-230, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.209
- [24] Gunes I., Kanat, S., “Diffusion Kinetics and Characterization of Borided AISI D6 Steel”, Protection of Metals and Physical Chemistry of Surfaces, 51, 842-846, 2016. https://doi.org/10.1134/S2070205115050111
- [25] Anand, R., Rao, A.B., Manjunarh, K. “Evaluating the effect of corrosion on service life prediction of RC structures – A parametric study”, International Journal of Sustainable Built Environment, 5, No. 2, pp. 587-603, 2016. https://doi.org/10.1016/j.ijsbe.2016.07.001
- [26] Krelling, A.P., Teixeira, F., Costa, C.E., Almeida, E.A.S., Zappelino, B., Milan, J.C.G. “Microabrasive wear behavior of borided steelabraded by SiO2particles”, Journal of Materials Research and Technology, 8(1), pp. 766-776, 2019. https://doi.org/10.1016/j.jmrt.2018.06.004
- [27] Gunes, I. “Wear behaviour of plasma paste boronized of AISI 8620 steel with borax and B2O3 paste mixtures,” J Mater Sci Technol, 29, pp. 662-668, 2013. Doi: 10.1016/j.jmst.2013.04.005
- [28] Ergun, Y., Gunes, I., Erdogan, M., Cankaya, N. “Effect of boriding treatment on the corrosion behavior of steels”, Journal of Nanoscience and Nanotechnology, 17, pp. 8946-8951, 2017. https://doi.org/10.1166/jnn.2017.14251
- [29] Erdogan, M., Gunes, I., Dalar, A. “Investigation of corrosion behavior of borided gear steels”, Transactions of the Indian Institute of Metals, 67, pp. 291–297, 2014. https://doi.org/10.1007/s12666-013-0329-8
- [30] Gunes, I., Erdogan, M., Çelik, A.G. “Corrosion behavior and characterization of plasma nitrided and borided AISI M2 steel,” Materials Research, 17, pp. 612-618, 2014. https://doi.org/10.1590/S1516-14392014005000061.
- [31] Sahin, S. “Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714,” Journal of Materials Processing Technology, 209, pp. 1736-1741, 2009. https://doi.org/10.1016/j.jmatprotec.2008.04.040
- [32] Zhou, H., Wang, W., Wang, K., Xu, L. “Mechanical properties deterioration of high strength steels after high temperature exposure”, Construction and Building Materials, 199, pp. 664-675, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.058
- [33] Cai, Y., Young, B. “Mechanical properties of thin sheet steel after exposure to high temperatures,” Thin-Walled Structures, 142, pp. 460-475, 2019. https://doi.org/10.1016/j.tws.2019.05.011
- [34] Gunes, I. “Investigation of Tribological Properties and Characterization of Borided AISI 420 and AISI 5120 Steels”, Transactions of the Indian Institute of Metals, 67, pp. 359-365, 2014.
https://doi.org/10.1007/s12666-013-0356-5
- [35] Makuch, N., Kulka, M., Dziarski, P., S. Taktak, S. “The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers,” Surface and Coatings Technology, 367, pp. 187-202, 2019. https://doi.org/10.1016/j.surfcoat.2019.03.042
- [36] Uçar, N., Aytar, O.B., Calik, A. “Temperature Behaviour of the Boride Layer of a Low-Carbon Microalloyed Steel”, Materials and Technology, 46, pp. 621-625, 2012.
https://www.dlib.si/stream/URN:NBN:SI:DOC-E0OLQLP8/2c4042fd-72ec-4fc6-ae38-9bc7e5914705/PDF