Research Article
BibTex RIS Cite

%3 Mg içeren Borlanmış Co-Mg Alaşımının Yüzey Özelliklerinin İncelenmesi

Year 2019, Volume: 6 Issue: 3, 533 - 542, 30.09.2019
https://doi.org/10.31202/ecjse.556680

Abstract

Bu çalışmada, %97 Co ve %3 Mg içeren Co-Mg alaşımına borlama işlemi
gerçekleştirilmiştir. Co-Mg alaşım malzemesini üretmek için toz metalurjisi (TM)
yöntemi kullanılmıştır. Bu yöntemde, Co ve Mg metal tozları kapalı kaplar
içerisinde homojen bir şekilde karıştırılarak şekillendirilmeleri için özel
olarak tasarlanmış silindirik kalıplara dökülmüştür. Tek eksenli preste 300 bar
basınç altında preslendikten sonra Argon gazı atmosferi ortamında 530 °C sıcaklıkta
sinterlenmiştir. Sinterlenerek üretilen numunelere sırasıyla sertlik, yoğunluk
ve yüzey pürüzlülüğü testleri uygulanmıştır. Sertlik testi sonrası 123 HV0,05
değeri elde edilirken ölçülen yoğunluk değeri ise 4,95 gr/cm3 olarak
bulunmuştur. Bu işlemler sonrasında numuneler kapalı fırın ortamında 850 ve 900
°C sıcaklık ve 1.5-4.5 saat değişen sürelerde borlama işlemi gerçekleştirilmiştir.
Bu işlem sonrasında
SEM ve XRD analiz
çalışmaları yapılmıştır
. Analiz sonrasında borür tabakaları 850 °C
sıcaklıkta 1,5 saat sürede 55 µm olarak bulunurken en yüksek 900 °C sıcaklık 4,5
saat sürede 140 µm olarak ölçülmüştür. Borlanmış Kobalt-Magnezyum alaşımlarına
uygulanan XRD analizi sonucunda CoB, Co2B ve Co
fazları elde edilmiştir. Mg elementinin hızlı bozulma
özelliğinden dolayı yapılarda kısmende olsa boşluklar oluşmuştur.

References

  • [1] Meneses-Amador, A., Sandoval-Juárez, D., Rodríguez-Castro, G. A., Fernández-Valdés, D., Campos-Silva, I., Vega-Morón, R. C., Arciniega-Martínez, J. L., “Contact fatigue performance of cobalt boride coatings”, Surface & Coatings Technology, 353 (2018) 346-354.
  • [2] Erdoğan, A., “Investigation of high temperature dry sliding behavior of borided H13 hot work tool steel with nanoboron powder”, Surface & Coatings Technology, 357 (2019) 886-895.
  • [3] Gunes I., Yıldız I., “Rate of Growth of Boride Layers on Stainless Steels”, Oxidation Communications, 38 (2015) 2189-2198.
  • [4] Rai, D., Singh, B., Singh, J., “Characterisation of wear behaviour of different microstructures in Ni–Cr–Mo–V steel”, Wear, 263 (2007) 821-829.
  • [5] Grushko, B., Kowalski, W., Mi, S. B., “A study of the Al-Co-Cr alloy system”, Journal of Alloys and Compounds, 739 (2018) 280-289.
  • [6] Johnston, J. M., Jubinsky, M., Catledge, S. A., “Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth”, Applied Surface Science, 328 (2015) 133-139.
  • [7] Yıldız, I., Gunes, I., Ulker, Ş., “Borlanmış Fe-Mg Alaşımının Aşınma Davranışının İncelenmesi”, 1st International Symposium on Light Alloys and Composite Materials, 2018 367-368, Karabuk.
  • [8] Rodríguez-Castro, G. A., Reséndiz-Calderon, C. D., Jiménez-Tinoco, L. F., Meneses-Amador, A., Gallardo-Hernández, E. A., Campos-Silva, I. E., “Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy”, Surface & Coatings Technology, 284 (2015) 258-263.[9] Çalık, A., Karakaş, M. S., Uçar, N., Ünüvar, F., “Boriding kinetics of pure cobalt”, Kovove Materialy, 52(2) (2014) 107-112.[10] Campos-Silva, I., Bravo-Bárcenas, D., Cimenoglu, H., Figueroa-López, U., Flores-Jiménez, M., Meydanoglu, O., “The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings”, Surface & Coatings Technology, 260 (2014) 362-368.
  • [11] Seki, E., Kajima, Y., Takaichi, A., Kittikundecha, N., Cho, H. H. W., Htat, H. L., Doi, H., Hanawa, T., Wakabayashi, N., “Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting”, Materials Letters, 245 (2019) 53-56.
  • [12] Zhang, Q., Li, K., Yan, J., Wang, Z., Wu, Q., Bi, L., Yang, M., Han, Y., “Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells”, Biochemical and Biophysical Research Communications, 497 (2018) 1011-1017.
  • [13] Langhorn, J., Borjali, A., Hippensteel, E., Nelson, W., Raeymaekers, B., “Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: Multi-directional wear and corrosion measurements”, Tribology International, 124 (2018) 178-183.
  • [14] Liu, Y., Gilber, J. L., “Effect of simulated inflammatory conditions and potential on dissolution and surface oxide of CoCrMo alloy: In situ electrochemical atomic force microscopy study”, Electrochimica Acta, 262 (2018) 252-263.
  • [15] Shiri, S., Zhang, C., Odeshi, A., Yang, Q., “Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic implant applications”, Thin Solid Films, 645 (2018) 405-408.
  • [16] Zhang, M., Yang, Y., Song, C., Bai, Y., Xiao, Z., “An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting”, Journal of Alloys and Compounds, 750 (2018) 878-886.
  • [17] Krelling, A. P., Teixeira, F., Edil da Costa, C., Santos de Almeida, E. A., Zappelino, B., Milan, J. C. G., “Microabrasive wear behavior of borided steel abraded by SiO2 particles”, Journal of Materials Research and Technology, (2018) In Press.
  • [18] Krelling, A. P., da Costa, C. E., Milan, J.C.G., Almeida, E. A. S., “Micro-abrasive wear mechanisms of borided AISI 1020 steel”, Tribology International, 111 (2017) 234-242.
  • [19] Peruzzo, M., Serafini, F. L., Ordoñez, M. F. C., Souza, R. M., Farias, M. C. M., “Reciprocating sliding wear of the sintered 316L stainless steel with boron additions”, Wear, 422-423 (2019) 109-118.
  • [20] Gunes, I., Yıldız, I., “Investigation of Adhesion and Tribological Behavior of Borided AISI 310 Stainless Steel”, Revista Materia, 21 (2016) 61-71.
  • [21] B´ejar, M. A., Moreno, E., “Abrasive wear resistance of boronized carbon and low-alloy steels”, Journal of Materials Processing Technology, 173 (2006) 352-358.
  • [22] Tabur, M., Izciler, M., Gul, F., Karacan, I., “Abrasive wear behavior of boronized AISI 8620 steel”, Wear, 266 (2009)1106–1112.
  • [23] Kulka, M., Makuch, N., Piasecki, A., “Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron”, Surface & Coatings Technology, 325 (2017) 515-532.
  • [24] Campos-Silva, I., Palomar-Pardavé, M., Pérez Pastén-Borja, R., Feridun, O. K., Bravo-Bárcenas, D., López-García, C. Reyes-Helguera, R., “Tribocorrosion and cytotoxicity of FeB-Fe2B layers on AISI 316 L steel”, Surface & Coatings Technology, 349 (2018) 986-997.
  • [25] Gök, M. S., Küçük, Y., Erdoğan, A., Öge, M., Kanca, E., Günen, A., “Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures”, Surface & Coatings Technology, 328 (2017) 54-62.
  • [26] Johnston, J. M., Jubinsky, M., Catledge, S. A., “Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth”, Applied Surface Science, 328 (2015) 133-139.
  • [27] Campos-Silva, I., Bravo-Bárcenas, D., Cimenoglu, H., Figueroa-López, U., Flores-Jiménez, M., Meydanoglu, O., “The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings”, Surface and Coating Technology, 260 (2014) 362-368.
  • [28] Al-Zain, O. A., Al-Masoudi, Soliyman, R., “Nano-Metal Borides of Cobalt, Nickel and Copper”, Journal of J Nanomedicine & Nanotechnology, 8 (2017) 477.
  • [29] Choi, S., Lapitan Jr., L.D.S., Cheng, Y., Watanabe, T., “Synthesis of cobalt boride nanoparticles using RF thermal plasma”, Advanced Powder Technology, 25 (2014) 65-371.
Year 2019, Volume: 6 Issue: 3, 533 - 542, 30.09.2019
https://doi.org/10.31202/ecjse.556680

Abstract

References

  • [1] Meneses-Amador, A., Sandoval-Juárez, D., Rodríguez-Castro, G. A., Fernández-Valdés, D., Campos-Silva, I., Vega-Morón, R. C., Arciniega-Martínez, J. L., “Contact fatigue performance of cobalt boride coatings”, Surface & Coatings Technology, 353 (2018) 346-354.
  • [2] Erdoğan, A., “Investigation of high temperature dry sliding behavior of borided H13 hot work tool steel with nanoboron powder”, Surface & Coatings Technology, 357 (2019) 886-895.
  • [3] Gunes I., Yıldız I., “Rate of Growth of Boride Layers on Stainless Steels”, Oxidation Communications, 38 (2015) 2189-2198.
  • [4] Rai, D., Singh, B., Singh, J., “Characterisation of wear behaviour of different microstructures in Ni–Cr–Mo–V steel”, Wear, 263 (2007) 821-829.
  • [5] Grushko, B., Kowalski, W., Mi, S. B., “A study of the Al-Co-Cr alloy system”, Journal of Alloys and Compounds, 739 (2018) 280-289.
  • [6] Johnston, J. M., Jubinsky, M., Catledge, S. A., “Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth”, Applied Surface Science, 328 (2015) 133-139.
  • [7] Yıldız, I., Gunes, I., Ulker, Ş., “Borlanmış Fe-Mg Alaşımının Aşınma Davranışının İncelenmesi”, 1st International Symposium on Light Alloys and Composite Materials, 2018 367-368, Karabuk.
  • [8] Rodríguez-Castro, G. A., Reséndiz-Calderon, C. D., Jiménez-Tinoco, L. F., Meneses-Amador, A., Gallardo-Hernández, E. A., Campos-Silva, I. E., “Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy”, Surface & Coatings Technology, 284 (2015) 258-263.[9] Çalık, A., Karakaş, M. S., Uçar, N., Ünüvar, F., “Boriding kinetics of pure cobalt”, Kovove Materialy, 52(2) (2014) 107-112.[10] Campos-Silva, I., Bravo-Bárcenas, D., Cimenoglu, H., Figueroa-López, U., Flores-Jiménez, M., Meydanoglu, O., “The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings”, Surface & Coatings Technology, 260 (2014) 362-368.
  • [11] Seki, E., Kajima, Y., Takaichi, A., Kittikundecha, N., Cho, H. H. W., Htat, H. L., Doi, H., Hanawa, T., Wakabayashi, N., “Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting”, Materials Letters, 245 (2019) 53-56.
  • [12] Zhang, Q., Li, K., Yan, J., Wang, Z., Wu, Q., Bi, L., Yang, M., Han, Y., “Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells”, Biochemical and Biophysical Research Communications, 497 (2018) 1011-1017.
  • [13] Langhorn, J., Borjali, A., Hippensteel, E., Nelson, W., Raeymaekers, B., “Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: Multi-directional wear and corrosion measurements”, Tribology International, 124 (2018) 178-183.
  • [14] Liu, Y., Gilber, J. L., “Effect of simulated inflammatory conditions and potential on dissolution and surface oxide of CoCrMo alloy: In situ electrochemical atomic force microscopy study”, Electrochimica Acta, 262 (2018) 252-263.
  • [15] Shiri, S., Zhang, C., Odeshi, A., Yang, Q., “Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic implant applications”, Thin Solid Films, 645 (2018) 405-408.
  • [16] Zhang, M., Yang, Y., Song, C., Bai, Y., Xiao, Z., “An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting”, Journal of Alloys and Compounds, 750 (2018) 878-886.
  • [17] Krelling, A. P., Teixeira, F., Edil da Costa, C., Santos de Almeida, E. A., Zappelino, B., Milan, J. C. G., “Microabrasive wear behavior of borided steel abraded by SiO2 particles”, Journal of Materials Research and Technology, (2018) In Press.
  • [18] Krelling, A. P., da Costa, C. E., Milan, J.C.G., Almeida, E. A. S., “Micro-abrasive wear mechanisms of borided AISI 1020 steel”, Tribology International, 111 (2017) 234-242.
  • [19] Peruzzo, M., Serafini, F. L., Ordoñez, M. F. C., Souza, R. M., Farias, M. C. M., “Reciprocating sliding wear of the sintered 316L stainless steel with boron additions”, Wear, 422-423 (2019) 109-118.
  • [20] Gunes, I., Yıldız, I., “Investigation of Adhesion and Tribological Behavior of Borided AISI 310 Stainless Steel”, Revista Materia, 21 (2016) 61-71.
  • [21] B´ejar, M. A., Moreno, E., “Abrasive wear resistance of boronized carbon and low-alloy steels”, Journal of Materials Processing Technology, 173 (2006) 352-358.
  • [22] Tabur, M., Izciler, M., Gul, F., Karacan, I., “Abrasive wear behavior of boronized AISI 8620 steel”, Wear, 266 (2009)1106–1112.
  • [23] Kulka, M., Makuch, N., Piasecki, A., “Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron”, Surface & Coatings Technology, 325 (2017) 515-532.
  • [24] Campos-Silva, I., Palomar-Pardavé, M., Pérez Pastén-Borja, R., Feridun, O. K., Bravo-Bárcenas, D., López-García, C. Reyes-Helguera, R., “Tribocorrosion and cytotoxicity of FeB-Fe2B layers on AISI 316 L steel”, Surface & Coatings Technology, 349 (2018) 986-997.
  • [25] Gök, M. S., Küçük, Y., Erdoğan, A., Öge, M., Kanca, E., Günen, A., “Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures”, Surface & Coatings Technology, 328 (2017) 54-62.
  • [26] Johnston, J. M., Jubinsky, M., Catledge, S. A., “Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth”, Applied Surface Science, 328 (2015) 133-139.
  • [27] Campos-Silva, I., Bravo-Bárcenas, D., Cimenoglu, H., Figueroa-López, U., Flores-Jiménez, M., Meydanoglu, O., “The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings”, Surface and Coating Technology, 260 (2014) 362-368.
  • [28] Al-Zain, O. A., Al-Masoudi, Soliyman, R., “Nano-Metal Borides of Cobalt, Nickel and Copper”, Journal of J Nanomedicine & Nanotechnology, 8 (2017) 477.
  • [29] Choi, S., Lapitan Jr., L.D.S., Cheng, Y., Watanabe, T., “Synthesis of cobalt boride nanoparticles using RF thermal plasma”, Advanced Powder Technology, 25 (2014) 65-371.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

İsmail Yıldız 0000-0002-9207-591X

İbrahim Güneş 0000-0001-7595-0121

Publication Date September 30, 2019
Submission Date April 22, 2019
Acceptance Date June 17, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

IEEE İ. Yıldız and İ. Güneş, “%3 Mg içeren Borlanmış Co-Mg Alaşımının Yüzey Özelliklerinin İncelenmesi”, El-Cezeri Journal of Science and Engineering, vol. 6, no. 3, pp. 533–542, 2019, doi: 10.31202/ecjse.556680.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png