Research Article
BibTex RIS Cite

Yer İvmesi Altındaki Sönümlü Ana Yapılar için Optimum Üç Elemanlı Ayarlı Kütle Sönümleyici

Year 2021, Volume: 8 Issue: 3, 1264 - 1271, 30.09.2021
https://doi.org/10.31202/ecjse.913901

Abstract

Pasif kontrol cihazları istenmeyen titreşimlerin azaltılması amacıyla uzun zamandır kullanılmaktadır. Bu cihazlardan en yaygın olarak kullanılanı ise ayarlı kütle sönümleyicilerdir. Bu çalışmada, yer ivmesi etkisindeki sönümlü ana yapılar için üç elemanlı ayarlı kütle sönümleyicilerin optimum parametreleri araştırılmıştır. Geleneksel ayarlı kütle sönümleyicinin aksine, üç elemanlı ayarlanmış kütle sönümleyicide iki rijitlik elemanı bulunur ve bunlardan biri sönüm elemanına seri olarak bağlıdır. Optimum parametreler benzetilmiş tavlama algoritması kullanılarak elde edilmiştir. Sayısal sonuçlar, üç elemanlı ayarlanmış kütle sönümleyici’nin sönümlü ana yapılardaki dinamik titreşimlerin azaltılmasında etkili olduğunu göstermektedir.

References

  • [1]. Den Hartog J.P. 1956. Mechanical Vibrations, 4th ed., New York: McGraw-Hill.
  • [2]. Fujino Y., Abe M., Design formulas for tuned mass dampers based on a perturbation technique. Earthq. Eng. Struct. Dyn., 1993, 22, 833-854.
  • [3]. Tsai H.C., The effect of tuned-mass dampers on the seismic response of base-isolated structures. Int. J. Solids Struct., 1995, 32, 1195-1210.
  • [4]. Jangid R.S., Optimum multiple tuned mass dampers for base-excited undamped system. Earthq. Eng. Struct. Dyn., 1999, 28, 1041-1049.
  • [5]. Bakre S.V., Jangid R.S., Optimum multiple tuned mass dampers for base-excited damped main system, 2004, Int. J. Struct. Stab. Dyn., 4, 527-542.
  • [6]. Marano G.C., Greco R., Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation, 2011, J. Vib. Control, 17, 679-688.
  • [7]. Yazdi H.A., Saberi H., Hatemi F., Designing optimal tuned mass dampers using improved harmony search algorithm, Adv. Struct. Eng., 2016, 19, 1620-1636.
  • [8]. Dell’Elce L., Gourc E., Kerschen G., A robust equal-peak method for uncertain mechanical systems. J. Sound Vib., 2018, 414, 97-109.
  • [9]. Araz O., Kahya V., Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation. Journal of Structural Engineering & Applied Mechanics, 2018, 1(3), 117–27.
  • [10]. Kahya V., Araz O., A sequential approach based design of multiple tuned mass dampers under harmonic excitation. Sigma J. Eng. & Nat. Sci., 2019, 37(1), 225-239.
  • [11]. Araz O., Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation. Arch. Appl. Mech., 2020, 90, 523–532.
  • [12]. Huang H., Chang W.S., Re-tuning an off-tuned tuned mass damper by adjusting temperature of shape memory alloy: Exposed to wind action, Structures, 2020, 25, 180-189.
  • [13]. Yamaguchi H., Harnpornchai N., Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthq. Eng. Struct. Dyn., 1993, 22, 51-62.
  • [14]. Abe M., Fujino Y., Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq. Eng. Struct. Dyn., 1994, 23, 813-835.
  • [15]. Abe M., Igusa T. Tuned mass dampers for structures with closely spaced natural frequencies. Earthq. Eng. Struct. Dyn., 1995, 24, 247-261.
  • [16]. Asami T., Nishihara O., Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. J. Vib. Acoust., 1999, 121, 334-342.
  • [17]. Asami T., Nishihara O., H2 optimization of the three-element type dynamic vibration absorbers. J. Vib. Acoust., 2002, 124, 583-592.
  • [18]. Anh N.D., Nguyen N.X., Hoa L.T., Design of three-element dynamic vibration absorber for damped linear structures. J. Sound Vib., 2013, 332, 4482-4495.
  • [19]. Javidialesaadi A., Wierschem N.E., Three-element vibration absorber–inerter for passive control of single-degree-of-freedom structures. J. Vib. Acoust., 2018, 140, 1-11.
  • [20]. Nishihara O., Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust., 2019, 141, 1-7.
  • [21]. Yang Y., Gao H., Ma W., Liu Q., Design of a turning cutting tool with large length–diameter ratio based on three-element type vibration absorber. Proc. IMechE Part B: J. Engineering Manufacture, 2020, 234, 1-12.

Optimum Three-Element Tuned Mass Damper for Damped Main Structures under Ground Acceleration

Year 2021, Volume: 8 Issue: 3, 1264 - 1271, 30.09.2021
https://doi.org/10.31202/ecjse.913901

Abstract

Passive control devices have been used for a long time to reduce unwanted vibrations. The most commonly used of these devices are tuned mass dampers. The optimum parameters of the three-element tuned mass damper for damped main structures due to ground acceleration are investigated in this paper. Unlike the traditional tuned mass damper, the three-element tuned mass damper contains two spring elements and one of them is connected in series with the damping element. The optimum parameters are obtained by simulated annealing algorithm. Numerical results show that the three-element tuned mass damper is very effective in reducing dynamic vibrations of the damped structures.

References

  • [1]. Den Hartog J.P. 1956. Mechanical Vibrations, 4th ed., New York: McGraw-Hill.
  • [2]. Fujino Y., Abe M., Design formulas for tuned mass dampers based on a perturbation technique. Earthq. Eng. Struct. Dyn., 1993, 22, 833-854.
  • [3]. Tsai H.C., The effect of tuned-mass dampers on the seismic response of base-isolated structures. Int. J. Solids Struct., 1995, 32, 1195-1210.
  • [4]. Jangid R.S., Optimum multiple tuned mass dampers for base-excited undamped system. Earthq. Eng. Struct. Dyn., 1999, 28, 1041-1049.
  • [5]. Bakre S.V., Jangid R.S., Optimum multiple tuned mass dampers for base-excited damped main system, 2004, Int. J. Struct. Stab. Dyn., 4, 527-542.
  • [6]. Marano G.C., Greco R., Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation, 2011, J. Vib. Control, 17, 679-688.
  • [7]. Yazdi H.A., Saberi H., Hatemi F., Designing optimal tuned mass dampers using improved harmony search algorithm, Adv. Struct. Eng., 2016, 19, 1620-1636.
  • [8]. Dell’Elce L., Gourc E., Kerschen G., A robust equal-peak method for uncertain mechanical systems. J. Sound Vib., 2018, 414, 97-109.
  • [9]. Araz O., Kahya V., Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation. Journal of Structural Engineering & Applied Mechanics, 2018, 1(3), 117–27.
  • [10]. Kahya V., Araz O., A sequential approach based design of multiple tuned mass dampers under harmonic excitation. Sigma J. Eng. & Nat. Sci., 2019, 37(1), 225-239.
  • [11]. Araz O., Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation. Arch. Appl. Mech., 2020, 90, 523–532.
  • [12]. Huang H., Chang W.S., Re-tuning an off-tuned tuned mass damper by adjusting temperature of shape memory alloy: Exposed to wind action, Structures, 2020, 25, 180-189.
  • [13]. Yamaguchi H., Harnpornchai N., Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthq. Eng. Struct. Dyn., 1993, 22, 51-62.
  • [14]. Abe M., Fujino Y., Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq. Eng. Struct. Dyn., 1994, 23, 813-835.
  • [15]. Abe M., Igusa T. Tuned mass dampers for structures with closely spaced natural frequencies. Earthq. Eng. Struct. Dyn., 1995, 24, 247-261.
  • [16]. Asami T., Nishihara O., Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. J. Vib. Acoust., 1999, 121, 334-342.
  • [17]. Asami T., Nishihara O., H2 optimization of the three-element type dynamic vibration absorbers. J. Vib. Acoust., 2002, 124, 583-592.
  • [18]. Anh N.D., Nguyen N.X., Hoa L.T., Design of three-element dynamic vibration absorber for damped linear structures. J. Sound Vib., 2013, 332, 4482-4495.
  • [19]. Javidialesaadi A., Wierschem N.E., Three-element vibration absorber–inerter for passive control of single-degree-of-freedom structures. J. Vib. Acoust., 2018, 140, 1-11.
  • [20]. Nishihara O., Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust., 2019, 141, 1-7.
  • [21]. Yang Y., Gao H., Ma W., Liu Q., Design of a turning cutting tool with large length–diameter ratio based on three-element type vibration absorber. Proc. IMechE Part B: J. Engineering Manufacture, 2020, 234, 1-12.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Onur Araz 0000-0002-6218-0559

Publication Date September 30, 2021
Submission Date April 12, 2021
Acceptance Date August 12, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

IEEE O. Araz, “Optimum Three-Element Tuned Mass Damper for Damped Main Structures under Ground Acceleration”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 3, pp. 1264–1271, 2021, doi: 10.31202/ecjse.913901.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png