Research Article
BibTex RIS Cite

Hidrojen Enerjisinin Bibliyometrik Analizi ve Değerlendirilmesi: En Çok Atıf Alan İlk 100 Çalışma

Year 2022, Volume: 9 Issue: 2, 748 - 759, 31.05.2022
https://doi.org/10.31202/ecjse.1001900

Abstract

Bu çalışma, dünya çapında yüksek atıf alan araştırmacıların hidrojen enerjisi alanındaki katkılarını araştırmaktadır. Temel amaç, hidrojen enerjisi alanındaki trendi incelemek ve araştırmacılara hızlı ve kolay erişim sağlamaktır. Bu kapsamda hidrojen enerjisi ile ilgili literatüre yön veren ve web of science (WOS) veri tabanına göre yüksek atıf alan bilimsel yayınları görselleştirmek için kapsamlı bir bibliyometrik yaklaşım uygulanmıştır. En çok atıf alan 100 çalışmanın yayın türü, temel araştırma alanları, konuyla ilgili verimli dergiler, alıntılar, yazarlık modeli, üyelikler, en çok kullanılan anahtar kelimeler, özetlerde en çok kullanılan kelimeler vb. Gibi çeşitli yönleri analiz edilmiştir. Ayrıca, ülkelerin katkıları , enstitüler, yazarlar ve dergiler gösterilmiştir. Miami Üniversitesi'nin en çok atıf alan 100 makale içinde 9 makale ile hidrojen enerjisi üzerinde büyük etkisi olduğu tespit edilmiştir. En üretken yazar 9 makale ile Turhan Nejat Veziroğlu olarak belirlendi. Hidrojen enerjisi ile ilgili en çok atıf alan 100 makale incelendiğinde, ABD 31 çalışma ile lider ülke konumunda. Bazı kusurlara rağmen, bu trend konusu çalışması, yıllar içinde hidrojen enerjisi araştırmalarına yapılan en önemli katkıları belirlemekte ve bu dönemde gerçekleşen birçok önemli bilimsel atılımı ve öne çıkanları ortaya koymaktadır. Ayrıca bu makalenin hidrojen enerjisini araştırmak isteyen araştırmacılara büyük bir yardım ve yol gösterici olacağı düşünülmektedir.

References

  • 1. Cavendish H (1766) XIX. Three papers, containing experiments on factitious air. Philosophical Transactions of the Royal Society of London 141–184
  • 2. Cavendish H (2010) The Scientific Papers of the Honourable Henry Cavendish. Cambridge University Press, Cambridge
  • 3. Midilli A, Dincer I (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. International Journal of Hydrogen Energy 33:4209–4222. https://doi.org/10.1016/j.ijhydene.2008.05.024
  • 4. Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges☆. International Journal of Hydrogen Energy 34:615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  • 5. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renewable and Sustainable Energy Reviews 6:141–179. https://doi.org/10.1016/S1364-0321(02)00004-7
  • 6. Das D (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26:13–28. https://doi.org/10.1016/S0360-3199(00)00058-6
  • 7. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
  • 8. Dincer I (2012) Green methods for hydrogen production. International Journal of Hydrogen Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173
  • 9. Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. International Journal of Hydrogen Energy 38:14595–14617. https://doi.org/10.1016/j.ijhydene.2013.07.058
  • 10. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy 34:4569–4574. https://doi.org/10.1016/j.ijhydene.2008.07.115
  • 11. Sakintuna B, Lamaridarkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review☆. International Journal of Hydrogen Energy 32:1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
  • 12. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy 27:193–202. https://doi.org/10.1016/S0360-3199(01)00103-3
  • 13. Cheng H-M, Yang Q-H, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454. https://doi.org/10.1016/S0008-6223(00)00306-7
  • 14. Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy 34:3784–3798. https://doi.org/10.1016/j.ijhydene.2009.03.001
  • 15. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy 37:1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004
  • 16. Umegaki T, Yan J-M, Zhang X-B, et al (2009) Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy 34:2303–2311. https://doi.org/10.1016/j.ijhydene.2009.01.002
  • 17. Muellerlanger F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. International Journal of Hydrogen Energy 32:3797–3810. https://doi.org/10.1016/j.ijhydene.2007.05.027
  • 18. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy 28:267–284. https://doi.org/10.1016/S0360-3199(02)00074-5
  • 19. Widera B (2020) Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Thermal Science and Engineering Progress 16:100460. https://doi.org/10.1016/j.tsep.2019.100460
  • 20. Kojima Y (2019) Hydrogen storage materials for hydrogen and energy carriers. International Journal of Hydrogen Energy 44:18179–18192. https://doi.org/10.1016/j.ijhydene.2019.05.119
  • 21. Karaismailoglu M, Figen HE, Baykara SZ (2019) Hydrogen production by catalytic methane decomposition over yttria doped nickel based catalysts. International Journal of Hydrogen Energy 44:9922–9929. https://doi.org/10.1016/j.ijhydene.2018.12.214
  • 22. Tezel E, Figen HE, Baykara SZ (2019) Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. International Journal of Hydrogen Energy 44:9930–9940. https://doi.org/10.1016/j.ijhydene.2018.12.151
  • 23. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45:3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.059
  • 24. Thomas JM, Edwards PP, Dobson PJ, Owen GP (2020) Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry S2095495620302448. https://doi.org/10.1016/j.jechem.2020.03.087
  • 25. Abdin Z, Zafaranloo A, Rafiee A, et al (2020) Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews 120:109620. https://doi.org/10.1016/j.rser.2019.109620
  • 26. Pinsky R, Sabharwall P, Hartvigsen J, O’Brien J (2020) Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy 123:103317. https://doi.org/10.1016/j.pnucene.2020.103317
  • 27. Imran M, Haglind F, Asim M, Zeb Alvi J (2018) Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renewable and Sustainable Energy Reviews 81:552–562. https://doi.org/10.1016/j.rser.2017.08.028
  • 28. He L, Fang H, Wang X, et al (2020) The 100 most-cited articles in urological surgery: A bibliometric analysis. International Journal of Surgery 75:74–79. https://doi.org/10.1016/j.ijsu.2019.12.030
  • 29. Andreo-Martínez P, Ortiz-Martínez VM, García-Martínez N, et al (2020) Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Applied Energy 264:114753. https://doi.org/10.1016/j.apenergy.2020.114753
  • 30. He M, Zhang Y, Gong L, et al (2019) Bibliometrical analysis of hydrogen storage. International Journal of Hydrogen Energy 44:28206–28226. https://doi.org/10.1016/j.ijhydene.2019.07.014
  • 31. Tsay M-Y (2008) A bibliometric analysis of hydrogen energy literature, 1965–2005. Scientometrics 75:421–438. https://doi.org/10.1007/s11192-007-1785-x
  • 32. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009
  • 33. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 38:4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  • 34. Adie E, Roe W (2013) Altmetric: enriching scholarly content with article-level discussion and metrics. Learn Pub 26:11–17. https://doi.org/10.1087/20130103

A Bibliometric Analysis and Evaluation of Hydrogen Energy: The Top 100 Most Cited Studies

Year 2022, Volume: 9 Issue: 2, 748 - 759, 31.05.2022
https://doi.org/10.31202/ecjse.1001900

Abstract

Bu çalışma, dünya çapında yüksek atıf alan araştırmacıların hidrojen enerjisi alanındaki katkılarını araştırmaktadır. Temel amaç, hidrojen enerjisi alanındaki trendi incelemek ve araştırmacılara hızlı ve kolay erişim sağlamaktır. Bu kapsamda hidrojen enerjisi ile ilgili literatüre yön veren ve web of science (WOS) veri tabanına göre yüksek atıf alan bilimsel yayınları görselleştirmek için kapsamlı bir bibliyometrik yaklaşım uygulanmıştır. En çok atıf alan 100 çalışmanın yayın türü, temel araştırma alanları, konuyla ilgili verimli dergiler, alıntılar, yazarlık modeli, üyelikler, en çok kullanılan anahtar kelimeler, özetlerde en çok kullanılan kelimeler vb. gibi çeşitli yönleri analiz edilmiştir. Ayrıca, ülkelerin katkıları , enstitüler, yazarlar ve dergiler gösterilmiştir. Miami Üniversitesi'nin en çok atıf alan 100 makale içinde 9 makale ile hidrojen enerjisi üzerinde büyük etkisi olduğu tespit edilmiştir. En üretken yazar 9 makale ile Turhan Nejat Veziroğlu olarak belirlenmiştir. Hidrojen enerjisi ile ilgili en çok atıf alan 100 makale incelendiğinde, ABD 31 çalışma ile lider ülke konumundadır. Bazı kusurlara rağmen, bu trend konusu çalışması, yıllar içinde hidrojen enerjisi araştırmalarına yapılan en önemli katkıları belirlemekte ve bu dönemde gerçekleşen birçok önemli bilimsel atılımı ve öne çıkanları ortaya koymaktadır. Ayrıca bu makalenin hidrojen enerjisini araştırmak isteyen araştırmacılara büyük bir yardım ve yol gösterici olacağı düşünülmektedir.

References

  • 1. Cavendish H (1766) XIX. Three papers, containing experiments on factitious air. Philosophical Transactions of the Royal Society of London 141–184
  • 2. Cavendish H (2010) The Scientific Papers of the Honourable Henry Cavendish. Cambridge University Press, Cambridge
  • 3. Midilli A, Dincer I (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. International Journal of Hydrogen Energy 33:4209–4222. https://doi.org/10.1016/j.ijhydene.2008.05.024
  • 4. Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges☆. International Journal of Hydrogen Energy 34:615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  • 5. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renewable and Sustainable Energy Reviews 6:141–179. https://doi.org/10.1016/S1364-0321(02)00004-7
  • 6. Das D (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26:13–28. https://doi.org/10.1016/S0360-3199(00)00058-6
  • 7. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
  • 8. Dincer I (2012) Green methods for hydrogen production. International Journal of Hydrogen Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173
  • 9. Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. International Journal of Hydrogen Energy 38:14595–14617. https://doi.org/10.1016/j.ijhydene.2013.07.058
  • 10. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy 34:4569–4574. https://doi.org/10.1016/j.ijhydene.2008.07.115
  • 11. Sakintuna B, Lamaridarkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review☆. International Journal of Hydrogen Energy 32:1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
  • 12. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy 27:193–202. https://doi.org/10.1016/S0360-3199(01)00103-3
  • 13. Cheng H-M, Yang Q-H, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454. https://doi.org/10.1016/S0008-6223(00)00306-7
  • 14. Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy 34:3784–3798. https://doi.org/10.1016/j.ijhydene.2009.03.001
  • 15. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy 37:1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004
  • 16. Umegaki T, Yan J-M, Zhang X-B, et al (2009) Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy 34:2303–2311. https://doi.org/10.1016/j.ijhydene.2009.01.002
  • 17. Muellerlanger F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. International Journal of Hydrogen Energy 32:3797–3810. https://doi.org/10.1016/j.ijhydene.2007.05.027
  • 18. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy 28:267–284. https://doi.org/10.1016/S0360-3199(02)00074-5
  • 19. Widera B (2020) Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Thermal Science and Engineering Progress 16:100460. https://doi.org/10.1016/j.tsep.2019.100460
  • 20. Kojima Y (2019) Hydrogen storage materials for hydrogen and energy carriers. International Journal of Hydrogen Energy 44:18179–18192. https://doi.org/10.1016/j.ijhydene.2019.05.119
  • 21. Karaismailoglu M, Figen HE, Baykara SZ (2019) Hydrogen production by catalytic methane decomposition over yttria doped nickel based catalysts. International Journal of Hydrogen Energy 44:9922–9929. https://doi.org/10.1016/j.ijhydene.2018.12.214
  • 22. Tezel E, Figen HE, Baykara SZ (2019) Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. International Journal of Hydrogen Energy 44:9930–9940. https://doi.org/10.1016/j.ijhydene.2018.12.151
  • 23. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45:3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.059
  • 24. Thomas JM, Edwards PP, Dobson PJ, Owen GP (2020) Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry S2095495620302448. https://doi.org/10.1016/j.jechem.2020.03.087
  • 25. Abdin Z, Zafaranloo A, Rafiee A, et al (2020) Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews 120:109620. https://doi.org/10.1016/j.rser.2019.109620
  • 26. Pinsky R, Sabharwall P, Hartvigsen J, O’Brien J (2020) Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy 123:103317. https://doi.org/10.1016/j.pnucene.2020.103317
  • 27. Imran M, Haglind F, Asim M, Zeb Alvi J (2018) Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renewable and Sustainable Energy Reviews 81:552–562. https://doi.org/10.1016/j.rser.2017.08.028
  • 28. He L, Fang H, Wang X, et al (2020) The 100 most-cited articles in urological surgery: A bibliometric analysis. International Journal of Surgery 75:74–79. https://doi.org/10.1016/j.ijsu.2019.12.030
  • 29. Andreo-Martínez P, Ortiz-Martínez VM, García-Martínez N, et al (2020) Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Applied Energy 264:114753. https://doi.org/10.1016/j.apenergy.2020.114753
  • 30. He M, Zhang Y, Gong L, et al (2019) Bibliometrical analysis of hydrogen storage. International Journal of Hydrogen Energy 44:28206–28226. https://doi.org/10.1016/j.ijhydene.2019.07.014
  • 31. Tsay M-Y (2008) A bibliometric analysis of hydrogen energy literature, 1965–2005. Scientometrics 75:421–438. https://doi.org/10.1007/s11192-007-1785-x
  • 32. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009
  • 33. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 38:4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  • 34. Adie E, Roe W (2013) Altmetric: enriching scholarly content with article-level discussion and metrics. Learn Pub 26:11–17. https://doi.org/10.1087/20130103
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Veysi Başhan 0000-0002-1070-1754

Yasin Üst 0000-0002-4023-3226

Publication Date May 31, 2022
Submission Date September 30, 2021
Acceptance Date March 31, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

IEEE V. Başhan and Y. Üst, “A Bibliometric Analysis and Evaluation of Hydrogen Energy: The Top 100 Most Cited Studies”, El-Cezeri Journal of Science and Engineering, vol. 9, no. 2, pp. 748–759, 2022, doi: 10.31202/ecjse.1001900.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png