Research Article
BibTex RIS Cite

Development of 1,2,3-Triazole Based Ionic Liquid Doped Sulfonated Polysulfone (SPSU) Electrolytes for Anhydrous Proton Exchange Membrane Applications

Year 2022, Volume: 9 Issue: 2, 584 - 597, 31.05.2022
https://doi.org/10.31202/ecjse.983144

Abstract

In this study, triazole based ionic liquid doped sulfonated polysulfone (SPSU) composite membranes were evaluated for high temperature proton exchange membrane fuel cell (PEMFC) systems. SPSU obtained by sulfonation of aromatic polysulfone (PSU) polymer matrix was used in the preparation of composite electrolytes. Sulfonated polymer matrices were doped with three different triazole-based ionic liquids (TIL-1, TIL-2 and TIL-3) synthesized within the scope of the study and composite membrane series were formed. Structural, thermal and mechanical characterizations were performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. Proton conductivities were measured over a wide temperature range (380-450 K) and the effectiveness of composite membranes in high temperature PEMFC systems was evaluated. As a result of TGA analysis, all triazole based ionic liquid doped membrane series exhibited high thermal resistance. It was observed that the proton conductivity of the composite structures was greatly improved with high temperature proton conductivity measurements (8.05 mS/cm for SPSU; 58.1 mS/cm for SPSU/TIL-3(1.0)) and the obtained membranes could be an alternative in high temperature PEMFCs.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Project Number

2019/AP/0006

Thanks

This work was supported by Scientific Research Support Fund of Yalova University, Yalova, Turkey, project number 2019/AP/0006.

References

  • [1]. Stambouli, A.B., Fuel Cells: The Expectations for an Environmental-Friendly and Sustainable Source of Energy, Renewable and Sustainable Energy Reviews, 2011, 15 (9), 4507-4520.
  • [2]. Yılmazoğlu, M., PEM Yakıt Hücreleri için Sülfone Polieter Eter Keton (sPEEK) Elektrolitlerin Sentezi ve Karakterizasyonu: Sülfonasyon Derecesi Etkisi, El-Cezeri Journal of Science and Engineering, 2020, 7 (2), 424-435.
  • [3]. Karimi, M.B., Mohammadi, F., Hooshyari, K., Effect of Deep Eutectic Solvents Hydrogen Bond Acceptor on The Anhydrous Proton Conductivity of Nafion Membrane for Fuel Cell Applications, Journal of Membrane Science, 2020, 605, 118116.
  • [4]. Mallant, R.K.A.M., PEMFC Systems: The Need for High Temperature Polymers As a Consequence of PEMFC Water and Heat Management, Journal of Power Sources, 2003, 118 (1-2), 424-429.
  • [5]. Quartarone, E., Angioni, S., Mustarelli, P., Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review, Materials, 2017, 10 (7), 687.
  • [6]. Jung, D.H., Cho, S.Y., Peck, D.H., Shin, D.R., Kim, J.S., Performance Evaluation of a Nafion/Silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell, Journal of Power Sources, 2002, 106 (1-2), 173-177.
  • [7]. Amjadi, M., Rowshanzamir, S., Peighambardoust S.J., Hosseini, M.G., Eikani, M.H., Investigation of Physical Properties and Cell Performance of Nafion/TiO2 Nanocomposite Membranes for High Temperature PEM Fuel Cells, International Journal of Hydrogen Energy, 2010, 35 (17), 9252-9260.
  • [8]. Higashihara, T., Matsumoto, K., Ueda, M., Sulfonated Aromatic Hydrocarbon Polymers as Proton Exchange Membranes for Fuel Cells, Polymer, 2009, 50 (23), 5341-5357.
  • [9]. Song, M., Lu, X., Li, Z., Liu, G., Yin, X., Wang, Y., Compatible Ionic Crosslinking Composite Membranes Based on SPEEK and PBI for High Temperature Proton Exchange Membranes, International Journal of Hydrogen Energy, 2016, 41 (28), 12069-12081.
  • [10]. Jannasch, P., Recent Developments in High-Temperature Proton Conducting Polymer Electrolyte Membranes, 2003, 8 (1), 96-102.
  • [11]. Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., He, R., Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes, Macromolecular Chemistry and Physics, 2017, 218 (10), 1700009.
  • [12]. Liu, H., Yu, H., Ionic Liquids for Electrochemical Energy Storage Devices Applications, Journal of Materials Science & Technology, 2019, 35 (4), 674-686.
  • [13]. Fernandes, A.M., Rocha, M.A.A., Freire, M.G., Marrucho, I.M., Coutinho, J.A.P., Santos, L.M.N.B.F., Evaluation of Cation−Anion Interaction Strength in Ionic Liquids, The Journal of Physical Chemistry B, 2011, 115 (14), 4033-4041.
  • [14]. Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Savilov, S.V., Lunin, V.V., Effect of Cation Structure of Tetraalkylammonium- and Imidazolium-Based Ionic Liquids on Their Conductivity, Electrochimica Acta, 2019, 297, 842-849.
  • [15]. Sun, Y., Shi, L., Basic Ionic Liquids with Imidazole Anion: New Reagents to Remove Naphthenic Acids From Crude Oil With High Total Acid Number, Fuel, 2012, 99, 83-87.
  • [16]. Luo, J., Hu, J., Saak, W., Beckhaus, R., Wittstock, G., Vankelecom, I.F.J., Agert, C., Conrad, O., Protic Ionic Liquid and Ionic Melts Prepared from Methanesulfonic Acid and 1H-1,2,4-Triazole as High Temperature PEMFC Electrolytes, 2011, 21 (28), 10426-10436.
  • [17]. Khan, S.S., Hanelt, S., Liebscher, J., Versatile Synthesis of 1, 2, 3-Triazolium-based Ionic Liquids, Arkivoc, 2009, 12, 193-208.
  • [18]. Kantheti, S., Narayan, R., Raju, K.V.S.N. Development of Moisture Cure Polyurethane–Urea Coatings Using 1,2,3-Triazole Core Hyperbranched Polyesters, Journal of Coatings Technology and Research, 2013, 10 (5), 609-619.
  • [19]. Yılmazoğlu, M., Bayıroğlu, F., Erdemi, H., Abaci, U., Guney, H.Y., Dielectric properties of sulfonated poly(ether ether ketone) (SPEEK) electrolytes with 1-ethyl-3-methylimidazolium tetrafluoroborate salt: Ionic liquid-based conduction pathways, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125825.
  • [20]. Sood, R., Donnadio, A., Giancola, S., Kreisz, A., Jones, D.J., Cavaliere, S., 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane, ACS Applied Materials & Interfaces, 2016, 8 (26), 16897-16906.
  • [21]. Kim, K., Jung, B.K., Ko, T., Kim, T.H., Lee, J.C., Comb-Shaped Polysulfones Containing Sulfonated Polytriazole Side Chains for Proton Exchange Membranes, Journal of Membrane Science, 2018, 554, 232-243.
  • [22]. Lufrano, F., Squadrito, G., Patti, A., Passalacqua, E., Sulfonated Polysulfone as Promising Membranes for Polymer Electrolyte Fuel Cells, Journal of Applied Polymer Science, 2000, 77 (6), 1250-1256.
  • [23]. Fu, Y.Z., Manthiram, A., Synthesis and Characterization of Sulfonated Polysulfone Membranes for Direct Methanol Fuel Cells, Journal of Power Sources, 2006, 157 (1), 222-225.
  • [24]. Yi, S., Zhang, F., Li, W., Huang, C., Zhang, H., Pan, M., Anhydrous Elevated-Temperature Polymer Electrolyte Membranes Based on Ionic Liquids, Journal of Membrane Science, 2011, 366 (1-2), 349–355.
  • [25]. Bennett, M.D., Leo, D.J., Wilkes, G.L., Beyer, F.L., Pechar, T.W., A Model of Charge Transport and Electromechanical Transduction in Ionic Liquid-Swollen Nafion Membranes, Polymer, 2006, 47, 6782–6796.
  • [26]. Park, H.B., Shin, H.S., Lee, Y.M., Rhim, J.W., Annealing Effect of Sulfonated Polysulfone Ionomer Membranes on Proton Conductivity and Methanol Transport, Journal of Membrane Science, 2005, 247 (1-2), 103-110.
  • [27]. Devrim, Y., Erkan, S., Baç, N., Eroğlu, I., Preparation and Characterization of Sulfonated Polysulfone/Titanium Dioxide Composite Membranes for Proton Exchange Membrane Fuel Cells, International Journal of Hydrogen Energy, 2009, 38 (8), 3467-3475.

Susuz Proton Değişim Membran Uygulamaları için 1,2,3-Triazol Esaslı İyonik Sıvı Katkılı Sülfone Polisülfon (SPSU) Elektrolitlerin Geliştirilmesi

Year 2022, Volume: 9 Issue: 2, 584 - 597, 31.05.2022
https://doi.org/10.31202/ecjse.983144

Abstract

Bu çalışmada triazol esaslı iyonik sıvı katkılı sülfone polisülfon (SPSU) kompozit membranlar, yüksek sıcaklık proton değişim membran yakıt hücresi (PEMYH) sistemleri için değerlendirilmiştir. Kompozit membranların hazırlanmasında, aromatik polisülfon (PSU) polimer matrisinin sülfonasyonuyla elde edilen SPSU kullanılmıştır. Yüksek sıcaklıklarda geliştirilmiş proton iletimi için kompozit elektrolitler, çalışma kapsamında sentezlenen üç farklı triazol esaslı iyonik sıvı (TIL-1, TIL-2 ve TIL-3) ile katkılanmış ve kompozit membran serileri oluşturulmuştur. Yapısal, termal ve mekanik karakterizasyonlar sırasıyla Fourier dönüşüm kızılötesi spektroskopisi (FTIR), termogravimetrik analiz (TGA) ve dinamik mekanik analiz (DMA) ile gerçekleştirilmiştir. Proton iletkenlikleri geniş bir sıcaklık aralığında (380-450 K) ölçülmüş ve kompozit membranların yüksek sıcaklık PEMYH sistemlerinde etkinliği değerlendirilmiştir. TGA analizi sonucunda, tüm triazol esaslı iyonik sıvı katkılı membran serileri, yüksek termal dayanım sergilemiştir. Yüksek sıcaklık proton iletkenlik ölçümleri ile kompozit yapıların proton iletkenliklerinin büyük ölçüde geliştirildiği (SPSU için 8.05 mS/cm; SPSU/TIL-3(1.0) için 58.1 mS/cm) ve elde edilen membranların yüksek sıcaklık PEMYH şartlarında alternatif olabileceği görülmüştür.

Project Number

2019/AP/0006

References

  • [1]. Stambouli, A.B., Fuel Cells: The Expectations for an Environmental-Friendly and Sustainable Source of Energy, Renewable and Sustainable Energy Reviews, 2011, 15 (9), 4507-4520.
  • [2]. Yılmazoğlu, M., PEM Yakıt Hücreleri için Sülfone Polieter Eter Keton (sPEEK) Elektrolitlerin Sentezi ve Karakterizasyonu: Sülfonasyon Derecesi Etkisi, El-Cezeri Journal of Science and Engineering, 2020, 7 (2), 424-435.
  • [3]. Karimi, M.B., Mohammadi, F., Hooshyari, K., Effect of Deep Eutectic Solvents Hydrogen Bond Acceptor on The Anhydrous Proton Conductivity of Nafion Membrane for Fuel Cell Applications, Journal of Membrane Science, 2020, 605, 118116.
  • [4]. Mallant, R.K.A.M., PEMFC Systems: The Need for High Temperature Polymers As a Consequence of PEMFC Water and Heat Management, Journal of Power Sources, 2003, 118 (1-2), 424-429.
  • [5]. Quartarone, E., Angioni, S., Mustarelli, P., Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review, Materials, 2017, 10 (7), 687.
  • [6]. Jung, D.H., Cho, S.Y., Peck, D.H., Shin, D.R., Kim, J.S., Performance Evaluation of a Nafion/Silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell, Journal of Power Sources, 2002, 106 (1-2), 173-177.
  • [7]. Amjadi, M., Rowshanzamir, S., Peighambardoust S.J., Hosseini, M.G., Eikani, M.H., Investigation of Physical Properties and Cell Performance of Nafion/TiO2 Nanocomposite Membranes for High Temperature PEM Fuel Cells, International Journal of Hydrogen Energy, 2010, 35 (17), 9252-9260.
  • [8]. Higashihara, T., Matsumoto, K., Ueda, M., Sulfonated Aromatic Hydrocarbon Polymers as Proton Exchange Membranes for Fuel Cells, Polymer, 2009, 50 (23), 5341-5357.
  • [9]. Song, M., Lu, X., Li, Z., Liu, G., Yin, X., Wang, Y., Compatible Ionic Crosslinking Composite Membranes Based on SPEEK and PBI for High Temperature Proton Exchange Membranes, International Journal of Hydrogen Energy, 2016, 41 (28), 12069-12081.
  • [10]. Jannasch, P., Recent Developments in High-Temperature Proton Conducting Polymer Electrolyte Membranes, 2003, 8 (1), 96-102.
  • [11]. Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., He, R., Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes, Macromolecular Chemistry and Physics, 2017, 218 (10), 1700009.
  • [12]. Liu, H., Yu, H., Ionic Liquids for Electrochemical Energy Storage Devices Applications, Journal of Materials Science & Technology, 2019, 35 (4), 674-686.
  • [13]. Fernandes, A.M., Rocha, M.A.A., Freire, M.G., Marrucho, I.M., Coutinho, J.A.P., Santos, L.M.N.B.F., Evaluation of Cation−Anion Interaction Strength in Ionic Liquids, The Journal of Physical Chemistry B, 2011, 115 (14), 4033-4041.
  • [14]. Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Savilov, S.V., Lunin, V.V., Effect of Cation Structure of Tetraalkylammonium- and Imidazolium-Based Ionic Liquids on Their Conductivity, Electrochimica Acta, 2019, 297, 842-849.
  • [15]. Sun, Y., Shi, L., Basic Ionic Liquids with Imidazole Anion: New Reagents to Remove Naphthenic Acids From Crude Oil With High Total Acid Number, Fuel, 2012, 99, 83-87.
  • [16]. Luo, J., Hu, J., Saak, W., Beckhaus, R., Wittstock, G., Vankelecom, I.F.J., Agert, C., Conrad, O., Protic Ionic Liquid and Ionic Melts Prepared from Methanesulfonic Acid and 1H-1,2,4-Triazole as High Temperature PEMFC Electrolytes, 2011, 21 (28), 10426-10436.
  • [17]. Khan, S.S., Hanelt, S., Liebscher, J., Versatile Synthesis of 1, 2, 3-Triazolium-based Ionic Liquids, Arkivoc, 2009, 12, 193-208.
  • [18]. Kantheti, S., Narayan, R., Raju, K.V.S.N. Development of Moisture Cure Polyurethane–Urea Coatings Using 1,2,3-Triazole Core Hyperbranched Polyesters, Journal of Coatings Technology and Research, 2013, 10 (5), 609-619.
  • [19]. Yılmazoğlu, M., Bayıroğlu, F., Erdemi, H., Abaci, U., Guney, H.Y., Dielectric properties of sulfonated poly(ether ether ketone) (SPEEK) electrolytes with 1-ethyl-3-methylimidazolium tetrafluoroborate salt: Ionic liquid-based conduction pathways, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125825.
  • [20]. Sood, R., Donnadio, A., Giancola, S., Kreisz, A., Jones, D.J., Cavaliere, S., 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane, ACS Applied Materials & Interfaces, 2016, 8 (26), 16897-16906.
  • [21]. Kim, K., Jung, B.K., Ko, T., Kim, T.H., Lee, J.C., Comb-Shaped Polysulfones Containing Sulfonated Polytriazole Side Chains for Proton Exchange Membranes, Journal of Membrane Science, 2018, 554, 232-243.
  • [22]. Lufrano, F., Squadrito, G., Patti, A., Passalacqua, E., Sulfonated Polysulfone as Promising Membranes for Polymer Electrolyte Fuel Cells, Journal of Applied Polymer Science, 2000, 77 (6), 1250-1256.
  • [23]. Fu, Y.Z., Manthiram, A., Synthesis and Characterization of Sulfonated Polysulfone Membranes for Direct Methanol Fuel Cells, Journal of Power Sources, 2006, 157 (1), 222-225.
  • [24]. Yi, S., Zhang, F., Li, W., Huang, C., Zhang, H., Pan, M., Anhydrous Elevated-Temperature Polymer Electrolyte Membranes Based on Ionic Liquids, Journal of Membrane Science, 2011, 366 (1-2), 349–355.
  • [25]. Bennett, M.D., Leo, D.J., Wilkes, G.L., Beyer, F.L., Pechar, T.W., A Model of Charge Transport and Electromechanical Transduction in Ionic Liquid-Swollen Nafion Membranes, Polymer, 2006, 47, 6782–6796.
  • [26]. Park, H.B., Shin, H.S., Lee, Y.M., Rhim, J.W., Annealing Effect of Sulfonated Polysulfone Ionomer Membranes on Proton Conductivity and Methanol Transport, Journal of Membrane Science, 2005, 247 (1-2), 103-110.
  • [27]. Devrim, Y., Erkan, S., Baç, N., Eroğlu, I., Preparation and Characterization of Sulfonated Polysulfone/Titanium Dioxide Composite Membranes for Proton Exchange Membrane Fuel Cells, International Journal of Hydrogen Energy, 2009, 38 (8), 3467-3475.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mesut Yılmazoğlu 0000-0001-9556-341X

Şeyda Korkmaz This is me 0000-0002-8691-0712

Project Number 2019/AP/0006
Publication Date May 31, 2022
Submission Date August 15, 2021
Acceptance Date February 7, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

IEEE M. Yılmazoğlu and Ş. Korkmaz, “Development of 1,2,3-Triazole Based Ionic Liquid Doped Sulfonated Polysulfone (SPSU) Electrolytes for Anhydrous Proton Exchange Membrane Applications”, ECJSE, vol. 9, no. 2, pp. 584–597, 2022, doi: 10.31202/ecjse.983144.

Cited By

SYNTHESIS OF POLYMER ELECTROLYTE MEMBRANES BASED ON IONIC LIQUID DOPED SPEEK
Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering
https://doi.org/10.18038/estubtda.1236278