Research Article
BibTex RIS Cite

ARINC 664 P7 AFDX Ağlarında Kablaj Optimizasyonuna Dayalı Sanal Bağlantıların Uyarlanmış Genetik Algoritmayla Yönlendirilmesi

Year 2022, Volume: 9 Issue: 4, 1411 - 1423, 31.12.2022
https://doi.org/10.31202/ecjse.1135589

Abstract

Hava araçları tasarımında kablo ve ekipman ağırlığının azaltılması önemli bir gereksinim kriteridir. Gelişen teknoloji ve ihtiyaçlar doğrultusunda hava araçları sistem mimarisi federe yapıdan modüler yapıya evirilerek ekipman ağırlığına çözüm bulmasına karşın kablo ağırlığına etkin bir çözüm getirememiştir. Bu maksatla verilerin ihtiyaç duyulduğu yerde işlemlerin gerçekleştirilmesine dayalı fakat kablaj ağırlığı getirmeyecek bir yapının tesisini amaçlayan bir sistem mimarisi hedeflenmiştir. Bunun sonucunda dağıtık sistem mimarisi ve geniş bant ağ veri yoluna dayalı sistem mimarisine geçilmesi yönünde çalışmalar yapılmıştır. Hava aracı içinde kullanılan donanımlar arası haberleşme ihtiyaçlarını karşılamaya yönelik kullanıcıların kolayca adapte olabileceği değerlendirilen ve halihazırda kullanımı olan IEEE 802.3 Ethernet haberleşmesi temel alınarak Aviyonik Tam Çift Yönlü Anahtarlamalı Ethernet Ağı (ARINC 664 P7 AFDX) geliştirilmiştir. Havacılığa özgü bu haberleşme protokolü; yedeklilik, tahsis edilmiş bant genişliği ve deterministtik zamanlama karakterlerini bünyesinde barındırmaktadır. Ayrıca bu iletişim protokolü sayesinde; kablaj ağırlığını azaltmak için aynı fiziksel bağlantıyı paylaşabilen, Sanal Bağlantı(SB) adı verilen, statik olarak yönlendirilmiş iletişim tünelleri aracılığıyla Ethernet verilerini tek kaynak Uç Sistem(US)’den bir ya da daha fazla US’a dağıtmak da mümkündür. Yapmış olduğumuz bu çalışmada karmaşık bir ağ yapısında kablaj ekibi tarafından belirlenen ağ anahtarları arası olası tüm fiziksel hatlar arasında kablaj ağırlığı kısıdına dayalı, bu uygulamaya yönelik uyarlanmış bir Genetik Algoritma(GA) vasıtasıyla SB’lerin yönlendirmeleri yapılarak optimal kablaj ağırlığının sağlandığı ve gereksiz hatların belirlendiği bir yöntem geliştirilmiştir. Sunulan uyarlanmış GA tabanlı metodun geçerliliğini doğrulamak için karmaşık bir ağ yapısı üzerinde deneysel benzetimle sınanmış ve ayrıca Dijkstra's Shortest Path Algoritması ile karşılaştırması yapılmıştır. Sunulan algoritmanın aviyonik endüstrisinde kullanılabilirliği deneysel benzetim sonuçlarıyla ortaya konmuştur.

References

  • Airlines Electronic Engineering Committee, "ARINC Specification 429 Part 1- 17," Aeronautical Radio Inc., Maryland USA, 2014.
  • DoD, "MIL-STD-1553C," US Department of Defense, 2018.
  • RTCA Special Committee (SC-200) and EUROCAE Working Group 60, Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations, Washington DC, USA: RTCA Inc., 2005.
  • H. Zimmermann, "OSI Reference Model--The ISO Model of Architecture for Open Systems Interconnection," IEEE Transactions on Communications, no. 28(4), p. 425–432, 1980.
  • Airlines Electronics Engineering Committee, ARINC Specification 664 P7-1, Maryland, USA : Aeronautical Radio Inc., 2006.
  • AIM GmbH , AFDX Switch Detailed Functional Specifiacation L42D1515051901, AIM GmbH , 2010.
  • H. P. Kersken, A. Schreiber, S. Martin , F. Michael , A. Regine , P. Post, K. Wolf, A. Beckert, T. Gerholt, R. Heinrich and E. Kügeler, "AMANDA - A Distributed System for Aircraft Design," Euro-Par 2000 Parallel Processing, pp. 1315-1322, 2000.
  • L. Cheng, H. Feng, W. Tong ve Z. Li, "A Routing Algorithm of Virtual Link for Avionics Full Duplex Switched Ethernet Network", Electronics Optics & Control, 2010, Vol.17, No.12.
  • C. Liu, H. Li, F. He ve G. Lu, "A Routing algorithm of AFDX network based on trajectory approach", Journal of Beijing University of Aeronautics and Astronautics, 2012, Vol.38,No.12.
  • A. A. Sheikh, O. Brun, M. Chéramy ve P. E. Hladik, "Optimal design of virtual links in AFDX networks", Real-Time Syst 49, 308–336 (2013). https://doi.org/10.1007/s11241-012-9171-z.
  • X. Zheng, N. Huang, Y. Zhang ve X. Li, "Performability optimization design of virtual links in AFDX networks", 2016 Annual Reliability and Maintainability Symposium (RAMS), 2016, pp. 1-6, doi: 10.1109/RAMS.2016.7447992.
  • T. Ren, Z. Zhu, G. M. Dimirovski, Z. H. Gao, X. H. Sun ve H. Yu, " A new pipe routing method for aero-engines based on genetic algorithm", Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 228 (3), pp. 424-434. https://dx.doi.org/10.1177/0954410012474134.
  • H. Sui ve W. Niu, "Branch-pipe-routing approach for ships using improved genetic algorithm", Front. Mech. Eng. 11, 316–323 (2016). https://doi.org/10.1007/s11465-016-0384-z.
  • Z. Dong ve X. Bian, "Ship Pipe Route Design Using Improved A* Algorithm and Genetic Algorithm", IEEE Access, vol. 8, pp. 153273-153296, 2020, doi: 10.1109/ACCESS.2020.3018145.
  • A. B. Conru, "A genetic approach to the cable harness routing problem", Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, 1994, pp. 200-205 vol.1, doi: 10.1109/ICEC.1994.350016.
  • J. Tanomaru ve K. Oka, "Automatic wire routing using a customized genetic algorithm", 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, 1995, pp. 2971-2976 vol.4, doi: 10.1109/ICSMC.1995.538236.
  • C. P. Yoon ve H. B. Ryou, "A Genetic Algorithm for the Routing Protocol Design of Wireless Mesh Networks", 2011 International Conference on Information Science and Applications, 2011, pp. 1-6, doi: 10.1109/ICISA.2011.5772428.
  • B. Díaz-Báez, D. P. Pinto-Roa ve C. von Lücken, "Robust network design under uncertain traffic an approach based on Genetic Algorithm", 2013 XXXIX Latin American Computing Conference (CLEI), 2013, pp. 1-8, doi: 10.1109/CLEI.2013.6670659.
  • G. T. Nair ve K. Sooda, "Application of genetic algorithm on quality graded networks for intelligent routing", 2011 World Congress on Information and Communication Technologies, 2011, pp. 558-563, doi: 10.1109/WICT.2011.6141306.
  • J. Huawei, Y. Shuailing ve W. Gaoping, "Study of an improved genetic algorithm for Ad Hoc network", 2009 IEEE International Symposium on IT in Medicine & Education, 2009, pp. 293-296, doi: 10.1109/ITIME.2009.5236414.
  • J. Patel ve H. El-Ocla, “Energy Efficient Routing Protocol in Sensor Networks Using Genetic Algorithm”, Sensors, vol. 21, no. 21, p. 7060, Oct. 2021, doi: 10.3390/s21217060.
  • X. Li, N. Huang ve F. Zhao, "A genetic algorithm based configuration optimization method for AFDX", 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), 2014, pp. 440-444, doi: 10.1109/ICRMS.2014.7107235.
  • E. C. Akpolat, Ö. F. Gemici, M. S. Demir, İ. Hökelek, S. Coleri ve H. A. Çırpan, "Genetic Algorithm Based ARINC 664 Mixed Criticality Optimization Using Network Calculus,", 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473569.
  • W. Shu-Xi, “The Improved Dijkstra’s Shortest Path Algorithm and Its Application”, Procedia Engineering, 2012.

Optimal Routing of Virtual Links under Harness Weight Constraint Using Modified Genetic Algorithm in ARINC 664 P7 AFDX Networks

Year 2022, Volume: 9 Issue: 4, 1411 - 1423, 31.12.2022
https://doi.org/10.31202/ecjse.1135589

Abstract

Reducing the weight of the harness and equipment is an important requirement criterion for aircraft design. In line with the developing technology and needs, the aircraft system architecture has evolved from a federated structure to a modular structure, and although it has found a solution to the equipment weight, it has not been able to provide an effective solution to the harness weight. For this purpose, a system architecture, not bringing the weight of the harness, has been aimed to establish a structure in which the data is processed where it is needed. As a result, studies were carried out to switch to a distributed system architecture and a system architecture based on a broadband network bus. Avionics Full Duplex Switched Ethernet Network (ARINC 664 P7 AFDX) has been developed on the basis of IEEE 802.3 Ethernet communication, which is currently in use and which is considered to be easily adaptable by users to meet the communication needs between the equipment used in the aircraft. This aviation-specific communication protocol; incorporates redundancy, allocated bandwidth, and deterministic timing characters. In addition, thanks to this communication protocol; It is also possible to distribute Ethernet frames from a single source End System (ES) to one or more ESs via statically routed communication tunnels called Virtual Links(VLs), which can share the same physical link to reduce harness weight. In this article, we established an experimental complex network structure between all possible physical lines among the network switches determined by the harnessing team. Then a modified Genetic Algorithm (GA), providing the optimal harness weight and determining the unnecessary links, has been developed for this application to route the VLs. To verify the validity of the proposed modified GA-based method, it has been tested by experimental simulation on mentioned complex network structure and also compared with Dijkstra's Shortest Path Algorithm. The usability of the presented algorithm in the avionics industry has been demonstrated by experimental simulation results.

References

  • Airlines Electronic Engineering Committee, "ARINC Specification 429 Part 1- 17," Aeronautical Radio Inc., Maryland USA, 2014.
  • DoD, "MIL-STD-1553C," US Department of Defense, 2018.
  • RTCA Special Committee (SC-200) and EUROCAE Working Group 60, Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations, Washington DC, USA: RTCA Inc., 2005.
  • H. Zimmermann, "OSI Reference Model--The ISO Model of Architecture for Open Systems Interconnection," IEEE Transactions on Communications, no. 28(4), p. 425–432, 1980.
  • Airlines Electronics Engineering Committee, ARINC Specification 664 P7-1, Maryland, USA : Aeronautical Radio Inc., 2006.
  • AIM GmbH , AFDX Switch Detailed Functional Specifiacation L42D1515051901, AIM GmbH , 2010.
  • H. P. Kersken, A. Schreiber, S. Martin , F. Michael , A. Regine , P. Post, K. Wolf, A. Beckert, T. Gerholt, R. Heinrich and E. Kügeler, "AMANDA - A Distributed System for Aircraft Design," Euro-Par 2000 Parallel Processing, pp. 1315-1322, 2000.
  • L. Cheng, H. Feng, W. Tong ve Z. Li, "A Routing Algorithm of Virtual Link for Avionics Full Duplex Switched Ethernet Network", Electronics Optics & Control, 2010, Vol.17, No.12.
  • C. Liu, H. Li, F. He ve G. Lu, "A Routing algorithm of AFDX network based on trajectory approach", Journal of Beijing University of Aeronautics and Astronautics, 2012, Vol.38,No.12.
  • A. A. Sheikh, O. Brun, M. Chéramy ve P. E. Hladik, "Optimal design of virtual links in AFDX networks", Real-Time Syst 49, 308–336 (2013). https://doi.org/10.1007/s11241-012-9171-z.
  • X. Zheng, N. Huang, Y. Zhang ve X. Li, "Performability optimization design of virtual links in AFDX networks", 2016 Annual Reliability and Maintainability Symposium (RAMS), 2016, pp. 1-6, doi: 10.1109/RAMS.2016.7447992.
  • T. Ren, Z. Zhu, G. M. Dimirovski, Z. H. Gao, X. H. Sun ve H. Yu, " A new pipe routing method for aero-engines based on genetic algorithm", Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 228 (3), pp. 424-434. https://dx.doi.org/10.1177/0954410012474134.
  • H. Sui ve W. Niu, "Branch-pipe-routing approach for ships using improved genetic algorithm", Front. Mech. Eng. 11, 316–323 (2016). https://doi.org/10.1007/s11465-016-0384-z.
  • Z. Dong ve X. Bian, "Ship Pipe Route Design Using Improved A* Algorithm and Genetic Algorithm", IEEE Access, vol. 8, pp. 153273-153296, 2020, doi: 10.1109/ACCESS.2020.3018145.
  • A. B. Conru, "A genetic approach to the cable harness routing problem", Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, 1994, pp. 200-205 vol.1, doi: 10.1109/ICEC.1994.350016.
  • J. Tanomaru ve K. Oka, "Automatic wire routing using a customized genetic algorithm", 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, 1995, pp. 2971-2976 vol.4, doi: 10.1109/ICSMC.1995.538236.
  • C. P. Yoon ve H. B. Ryou, "A Genetic Algorithm for the Routing Protocol Design of Wireless Mesh Networks", 2011 International Conference on Information Science and Applications, 2011, pp. 1-6, doi: 10.1109/ICISA.2011.5772428.
  • B. Díaz-Báez, D. P. Pinto-Roa ve C. von Lücken, "Robust network design under uncertain traffic an approach based on Genetic Algorithm", 2013 XXXIX Latin American Computing Conference (CLEI), 2013, pp. 1-8, doi: 10.1109/CLEI.2013.6670659.
  • G. T. Nair ve K. Sooda, "Application of genetic algorithm on quality graded networks for intelligent routing", 2011 World Congress on Information and Communication Technologies, 2011, pp. 558-563, doi: 10.1109/WICT.2011.6141306.
  • J. Huawei, Y. Shuailing ve W. Gaoping, "Study of an improved genetic algorithm for Ad Hoc network", 2009 IEEE International Symposium on IT in Medicine & Education, 2009, pp. 293-296, doi: 10.1109/ITIME.2009.5236414.
  • J. Patel ve H. El-Ocla, “Energy Efficient Routing Protocol in Sensor Networks Using Genetic Algorithm”, Sensors, vol. 21, no. 21, p. 7060, Oct. 2021, doi: 10.3390/s21217060.
  • X. Li, N. Huang ve F. Zhao, "A genetic algorithm based configuration optimization method for AFDX", 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), 2014, pp. 440-444, doi: 10.1109/ICRMS.2014.7107235.
  • E. C. Akpolat, Ö. F. Gemici, M. S. Demir, İ. Hökelek, S. Coleri ve H. A. Çırpan, "Genetic Algorithm Based ARINC 664 Mixed Criticality Optimization Using Network Calculus,", 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473569.
  • W. Shu-Xi, “The Improved Dijkstra’s Shortest Path Algorithm and Its Application”, Procedia Engineering, 2012.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Otman Baturay Bayram 0000-0003-0747-8405

Alper Özcan 0000-0002-5999-1203

Publication Date December 31, 2022
Submission Date June 24, 2022
Acceptance Date September 30, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

IEEE O. B. Bayram and A. Özcan, “Optimal Routing of Virtual Links under Harness Weight Constraint Using Modified Genetic Algorithm in ARINC 664 P7 AFDX Networks”, El-Cezeri Journal of Science and Engineering, vol. 9, no. 4, pp. 1411–1423, 2022, doi: 10.31202/ecjse.1135589.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png