Research Article
BibTex RIS Cite

Fenol Giderimi için Kağıt Tabanlı PANI/Enzim Biyofiltre Geliştirilmesi

Year 2023, Volume: 10 Issue: 1, 36 - 45, 31.01.2023
https://doi.org/10.31202/ecjse.1128865

Abstract

Fenol bileşikleri birçok endüstriyel alanda kullanılmaktadır. Yüksek toksisiteleri ve kararlılıkları nedeniyle, üretimleri ve kullanımları sırasında düşük konsantrasyonlarda bile insanlar ve hayvanlar için kanserojendir. Bu nedenle fenol kirleticilerinin uzaklaştırılması oldukça gereklidir. Fenollerin neden olduğu su kirliliği, hem insanları hem de çevreyi tehdit eden, küresel olarak en ciddi sorunlardan biridir. Artan endüstriyel ve insan faaliyetleri, atık suların su kaynaklarına deşarjının artmasına neden olmuştur. Bu fenolik bileşiklerin farklı yöntemler ve etkili yöntemler ile uzaklaştırılması çok önemlidir. Bu çalışmada, filtre kağıdı üzerinde oluşturduğumuz polianilin ve tirozinaz enzimi ile oluşturulan biyofiltre yapısı sayesinde fenolün tutulmasını ve enzimatik bir reaksiyon ile daha az zararlı hale dönüştürülmesi amaçlanmaktadır. Bu işlem yapılırken reaktör malzemesi olarak FeCl3 çözeltisi kullanılmış ve anilin, HCl içinde FeCl3 çözeltisi ile polianilin haline getirilmiştir. Bu işlemler yapılırken deneyi oluşturan bileşenler farklı konsantrasyonlarda kullanılarak en verimli biyofiltrenin hazırlanması hedeflenmiştir. Fenolik bileşenlerin giderimlerinde oluşturulan biyofiltrelerin % etkinlikleri hesaplanırken filtrasyon öncesi ve sonrası absorbans değerleri ölçülmüştür. En yüksek biyofiltre aktivitesi yüzdesinin 0.15 M anilin, 10 KU tirozinaz enzimi ve %1 kitosan konsantrasyonları kullanılarak oluşturulduğu belirlenmiştir.

References

  • [1] Anku WW, Mamo MA, Govender PP. Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. Phenolic Compd sources, importance Appl. 419–443 (2017).
  • [2] Ramírez EEP, Asunción M de la L, Rivalcoba VS, Hernández ALM, Santos CV. Removal of phenolic compounds from water by adsorption and photocatalysis. Intech Open. doi. org/10.5772/66895 (2017).
  • [3] Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N. A short review of techniques for phenol removal from wastewater. Curr Pollut Reports. 2(3): 157–167 (2016).
  • [4] Mahugo Santana C, Sosa Ferrera Z, Esther Torres Padrón M, Juan Santana Rodríguez J. Methodologies for the extraction of phenolic compounds from environmental samples: new approaches. Molecules. 14(1): 298–320 (2009).
  • [5] Ikehata K, Nicell JA. Characterization of tyrosinase for the treatment of aqueous phenols. Bioresour Technol. 74(3): 191–199 (2000).
  • [6] Seetharam GB, Saville BA. Degradation of phenol using tyrosinase immobilized on siliceous supports. Water Res. 37(2): 436–440 (2003).
  • [7] Xu D-Y, Yang Z. Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere. 92(4): 391–398 (2013).
  • [8] Samadi A, Xie M, Li J, Shon H, Zheng C, Zhao S. Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem Eng J. 418: 129425 (2021).
  • [9] Yang L, Wu S, Chen JP. Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate. Ind Eng Chem Res. 46(7): 2133–2140 (2007).
  • [10] Gao Q, Zheng H-B, Luo D, Ding J, Feng Y-Q. Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta. 720: 57–62 (2012).
  • [11] Vijayalakshmi S, Kumar E, Venkatesh PS, Raja A. Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater. Ionics (Kiel). 26(3): 1507–1513 (2020).
  • [12] Ishtiaq F, Bhatti HN, Khan A, Iqbal M, Kausar A. Polypyrole, polyaniline and sodium alginate biocomposites and adsorption-desorption efficiency for imidacloprid insecticide. Int J Biol Macromol. 147: 217–232 (2020).
  • [13] Zhou Q, Wang Y, Xiao J, Zhan Y. Preparation of magnetic core-shell Fe3O4@ polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether. Ecotoxicol Environ Saf. 183: 109471 (2019).
  • [14] Laabd M, Hallaoui A, Aarb N, Essekri A, Eljazouli H, Lakhmiri R, et al. Removal of polycarboxylic benzoic acids using polyaniline-polypyrrole copolymer: experimental and DFT studies. Fibers Polym. 20(5): 896–905 (2019).
  • [15] Jiang X, Cheng J, Zhou H, Li F, Wu W, Ding K. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples. Talanta. 141: 239–246 (2015).
  • [16] Emerson E. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J Org Chem. 8(5): 417–428 (1943).
  • [17] Varadaraju C, Tamilselvan G, Enoch I, Selvakumar PM. Phenol sensing studies by 4-aminoantipyrine method—a review. Org Med Chem Int J. 5: 555657 (2018).
  • [18] Fiamegos Y, Stalikas C, Pilidis G. 4-Aminoantipyrine spectrophotometric method of phenol analysis: Study of the reaction products via liquid chromatography with diode-array and mass spectrometric detection. Anal Chim Acta. 467(1–2): 105–114 (2002).

Paper-based PANI/Enzyme Biofilter Development for Phenol Removal

Year 2023, Volume: 10 Issue: 1, 36 - 45, 31.01.2023
https://doi.org/10.31202/ecjse.1128865

Abstract

Phenol compounds are used in many industrial areas. Due to their high toxicity and stability, phenol compounds are carcinogenic to humans and animals even at low concentrations during their production and use. For this reason, the removal of phenol contaminants is both necessary and beneficial. Water pollution caused by phenols is one of the most serious problems globally, threatening both people and the environment. Increasing industrial and human activities have led to an increase in wastewater discharge into water resources. These phenolic chemicals are harmful, and although there are different methods used, it is very important to find new materials and effective methods to remove these pollutants from water. This study aimed to convert the phenols purified from water using tyrosinase paste to a less harmful state by making an enzymatic biofilter for phenol removal, thanks to the polyaniline structure we formed on the filter paper, to ensure phenol retention. While this process took place, FeCl3 solution was used as the reactor material, and aniline was turned into polyaniline with FeCl3 solution in HCl. While these processes are being carried out, it is aimed to prepare the most efficient biofilter by using the components that make up the experiment at different concentrations. By calculating the % efficiency of the catechols, absorbance values were measured before and after filtration. It was revealed that the highest percentage of biofilter activity was formed using 0.15 M aniline, 10 KU tyrosinase enzyme, and 1% chitosan concentrations.

References

  • [1] Anku WW, Mamo MA, Govender PP. Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. Phenolic Compd sources, importance Appl. 419–443 (2017).
  • [2] Ramírez EEP, Asunción M de la L, Rivalcoba VS, Hernández ALM, Santos CV. Removal of phenolic compounds from water by adsorption and photocatalysis. Intech Open. doi. org/10.5772/66895 (2017).
  • [3] Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N. A short review of techniques for phenol removal from wastewater. Curr Pollut Reports. 2(3): 157–167 (2016).
  • [4] Mahugo Santana C, Sosa Ferrera Z, Esther Torres Padrón M, Juan Santana Rodríguez J. Methodologies for the extraction of phenolic compounds from environmental samples: new approaches. Molecules. 14(1): 298–320 (2009).
  • [5] Ikehata K, Nicell JA. Characterization of tyrosinase for the treatment of aqueous phenols. Bioresour Technol. 74(3): 191–199 (2000).
  • [6] Seetharam GB, Saville BA. Degradation of phenol using tyrosinase immobilized on siliceous supports. Water Res. 37(2): 436–440 (2003).
  • [7] Xu D-Y, Yang Z. Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere. 92(4): 391–398 (2013).
  • [8] Samadi A, Xie M, Li J, Shon H, Zheng C, Zhao S. Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem Eng J. 418: 129425 (2021).
  • [9] Yang L, Wu S, Chen JP. Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate. Ind Eng Chem Res. 46(7): 2133–2140 (2007).
  • [10] Gao Q, Zheng H-B, Luo D, Ding J, Feng Y-Q. Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta. 720: 57–62 (2012).
  • [11] Vijayalakshmi S, Kumar E, Venkatesh PS, Raja A. Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater. Ionics (Kiel). 26(3): 1507–1513 (2020).
  • [12] Ishtiaq F, Bhatti HN, Khan A, Iqbal M, Kausar A. Polypyrole, polyaniline and sodium alginate biocomposites and adsorption-desorption efficiency for imidacloprid insecticide. Int J Biol Macromol. 147: 217–232 (2020).
  • [13] Zhou Q, Wang Y, Xiao J, Zhan Y. Preparation of magnetic core-shell Fe3O4@ polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether. Ecotoxicol Environ Saf. 183: 109471 (2019).
  • [14] Laabd M, Hallaoui A, Aarb N, Essekri A, Eljazouli H, Lakhmiri R, et al. Removal of polycarboxylic benzoic acids using polyaniline-polypyrrole copolymer: experimental and DFT studies. Fibers Polym. 20(5): 896–905 (2019).
  • [15] Jiang X, Cheng J, Zhou H, Li F, Wu W, Ding K. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples. Talanta. 141: 239–246 (2015).
  • [16] Emerson E. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J Org Chem. 8(5): 417–428 (1943).
  • [17] Varadaraju C, Tamilselvan G, Enoch I, Selvakumar PM. Phenol sensing studies by 4-aminoantipyrine method—a review. Org Med Chem Int J. 5: 555657 (2018).
  • [18] Fiamegos Y, Stalikas C, Pilidis G. 4-Aminoantipyrine spectrophotometric method of phenol analysis: Study of the reaction products via liquid chromatography with diode-array and mass spectrometric detection. Anal Chim Acta. 467(1–2): 105–114 (2002).
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nimet Yıldırım Tirgil 0000-0002-5973-8830

Necdet Bugra Aliustaoglu This is me 0000-0001-5146-3855

Publication Date January 31, 2023
Submission Date June 10, 2022
Acceptance Date January 26, 2023
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

IEEE N. Yıldırım Tirgil and N. B. Aliustaoglu, “Paper-based PANI/Enzyme Biofilter Development for Phenol Removal”, El-Cezeri Journal of Science and Engineering, vol. 10, no. 1, pp. 36–45, 2023, doi: 10.31202/ecjse.1128865.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png