Research Article
BibTex RIS Cite

Encapsulation and characterization of catechin and epicatechin microcapsules using yeast cell biocarriers

Year 2023, , 47 - 52, 31.12.2023
https://doi.org/10.55147/efse.1386847

Abstract

In this study, catechin and epicatechin compounds were encapsulated using Saccharomyces cerevisiae yeast cell and fabricated yeast cell microcarriers were subjected to bioactive analysis, conformational and morphological characterization. Encapsulation efficiency values of the yeast cell microcarriers were 24.74 and 31.87% for the epicatechin and catechin loaded yeast cell microcapsules, respectively. Total flavonoid content of the epicatechin and catechin loaded yeast cell microcapsules were determined to be 79.67 and 61.86 mg CE/g while the antiradical activity of the samples was in the range of 4.16-39.24%. FT-IR and XRD spectrum revealed that the catechin and epicatechin were encapsulated by the yeasts cell successfully.

References

  • Castel, V., Rubiolo, A. C., & Carrara, C. R. (2018). Brea gum as wall material in the microencapsulation of corn oil by spray drying: Effect of inulin addition. Food Research International, 103, 76-83. doi:10.1016/j.foodres.2017.10.036
  • Czerniak, A., Kubiak, P., Białas, W., & Jankowski, T. (2015). Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. Journal of Food Engineering, 167, 2-11. doi:10.1016/j.jfoodeng.2015.01.002
  • de Barros Fernandes, R. V., Botrel, D. A., Silva, E. K., Borges, S. V., de Oliveira, C. R., Yoshida, M. I., ... & de Paula, R. C. M. (2016). Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 153, 133-142. doi:10.1016/j.carbpol.2016.07.096
  • Eugène, E. A., Ganiyou, A., Denis, Y. K., Ané, A., & Sawaliho, B. E. H. (2022). Catechin and Epicatechin. What’s the More Reactive? Computational Chemistry, 10(2), 53-70. doi: 10.4236/cc.2022.102003
  • Gadkari, P. V., & Balaraman, M. (2015). Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing, 93, 122-138. doi:10.1016/j.fbp.2013.12.004
  • Guler, U. A., & Sarioglu, M. (2014). Mono and binary component biosorbtion of Cu(II), Ni(II) and methylene blue onto raw and pretreated S. cerevisiae. Equilibruim and kinetics. Desalination and Water Treatment, 52, 4871–4888. doi:10.1080/19443994.2013.810359
  • Ikigai, H., Nakae, T., Hara, Y., & Shimamura, T. (1993). Bactericidal catechins damage the lipid bilayer. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1147(1), 132-136. doi:10.1016/0005-2736(93)90323-R
  • Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313, 126129. doi:10.1016/j.foodchem.2019.126129
  • Karaman, K. (2021). Fabrication of gallic acid loaded yeast (Saccharomyces cerevisiae) microcapsules: Effect of plasmolysis treatment and solvent type on bioactivity and release kinetics. LWT-Food Science and Technology, 148, 111640. doi:10.1016/j.lwt.2021.111640
  • Kavosi, M., Mohammadi, A., Shojaee‐Aliabadi, S., Khaksar, R., & Hosseini, S. M. (2018). Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. Journal of the Science of Food and Agriculture, 98(7), 2490-2497. doi:10.1002/jsfa.8696
  • Kondo, S., Tsuda, K., Muto, N., & Ueda, J. E. (2002). Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Scientia Horticulturae, 96(1-4), 177-185. doi:10.1016/S0304-4238(02)00127-9
  • Munin, A., & Edwards-Levy. F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3, 793–829. doi:10.1016/S0304-4238(02)00127-9
  • Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(3), 892–902. doi:10.1016/j.foodchem.2010.09.063
  • Shi, G., Rao, L., Yu, H., Xiang, H., Yang, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1-2), 83-93. doi: 10.1016/j.ijpharm.2007.07.044
  • Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S., & Folts, J. D. (1999). Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation, 100(10), 1050-1055. doi:10.1161/01.CIR.100.10.1050
  • Volf, I., Ignat, I., Neamtu, M., Popa, VI. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Papers,68, 121–129. doi:10.2478/s11696-013-0417-6
  • Wollny, T., Aiello, L., Di Tommaso, D., Bellavia, V., Rotilio, D., Donati, M. B., ... & Iacoviello, L. (1999). Modulation of haemostatic function and prevention of experimental thrombosis by red wine in rats: a role for increased nitric oxide production. British Journal of Pharmacology, 127(3), 747-755. doi:10.1038/sj.bjp.0702586
Year 2023, , 47 - 52, 31.12.2023
https://doi.org/10.55147/efse.1386847

Abstract

References

  • Castel, V., Rubiolo, A. C., & Carrara, C. R. (2018). Brea gum as wall material in the microencapsulation of corn oil by spray drying: Effect of inulin addition. Food Research International, 103, 76-83. doi:10.1016/j.foodres.2017.10.036
  • Czerniak, A., Kubiak, P., Białas, W., & Jankowski, T. (2015). Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. Journal of Food Engineering, 167, 2-11. doi:10.1016/j.jfoodeng.2015.01.002
  • de Barros Fernandes, R. V., Botrel, D. A., Silva, E. K., Borges, S. V., de Oliveira, C. R., Yoshida, M. I., ... & de Paula, R. C. M. (2016). Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 153, 133-142. doi:10.1016/j.carbpol.2016.07.096
  • Eugène, E. A., Ganiyou, A., Denis, Y. K., Ané, A., & Sawaliho, B. E. H. (2022). Catechin and Epicatechin. What’s the More Reactive? Computational Chemistry, 10(2), 53-70. doi: 10.4236/cc.2022.102003
  • Gadkari, P. V., & Balaraman, M. (2015). Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing, 93, 122-138. doi:10.1016/j.fbp.2013.12.004
  • Guler, U. A., & Sarioglu, M. (2014). Mono and binary component biosorbtion of Cu(II), Ni(II) and methylene blue onto raw and pretreated S. cerevisiae. Equilibruim and kinetics. Desalination and Water Treatment, 52, 4871–4888. doi:10.1080/19443994.2013.810359
  • Ikigai, H., Nakae, T., Hara, Y., & Shimamura, T. (1993). Bactericidal catechins damage the lipid bilayer. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1147(1), 132-136. doi:10.1016/0005-2736(93)90323-R
  • Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313, 126129. doi:10.1016/j.foodchem.2019.126129
  • Karaman, K. (2021). Fabrication of gallic acid loaded yeast (Saccharomyces cerevisiae) microcapsules: Effect of plasmolysis treatment and solvent type on bioactivity and release kinetics. LWT-Food Science and Technology, 148, 111640. doi:10.1016/j.lwt.2021.111640
  • Kavosi, M., Mohammadi, A., Shojaee‐Aliabadi, S., Khaksar, R., & Hosseini, S. M. (2018). Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. Journal of the Science of Food and Agriculture, 98(7), 2490-2497. doi:10.1002/jsfa.8696
  • Kondo, S., Tsuda, K., Muto, N., & Ueda, J. E. (2002). Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Scientia Horticulturae, 96(1-4), 177-185. doi:10.1016/S0304-4238(02)00127-9
  • Munin, A., & Edwards-Levy. F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3, 793–829. doi:10.1016/S0304-4238(02)00127-9
  • Paramera, E. I., Konteles, S. J., & Karathanos, V. T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(3), 892–902. doi:10.1016/j.foodchem.2010.09.063
  • Shi, G., Rao, L., Yu, H., Xiang, H., Yang, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1-2), 83-93. doi: 10.1016/j.ijpharm.2007.07.044
  • Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S., & Folts, J. D. (1999). Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation, 100(10), 1050-1055. doi:10.1161/01.CIR.100.10.1050
  • Volf, I., Ignat, I., Neamtu, M., Popa, VI. (2014). Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Papers,68, 121–129. doi:10.2478/s11696-013-0417-6
  • Wollny, T., Aiello, L., Di Tommaso, D., Bellavia, V., Rotilio, D., Donati, M. B., ... & Iacoviello, L. (1999). Modulation of haemostatic function and prevention of experimental thrombosis by red wine in rats: a role for increased nitric oxide production. British Journal of Pharmacology, 127(3), 747-755. doi:10.1038/sj.bjp.0702586
There are 17 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Kevser Karaman 0000-0003-0729-6185

Publication Date December 31, 2023
Submission Date November 6, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2023

Cite

APA Karaman, K. (2023). Encapsulation and characterization of catechin and epicatechin microcapsules using yeast cell biocarriers. European Food Science and Engineering, 4(2), 47-52. https://doi.org/10.55147/efse.1386847