Review
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 1, 26 - 33, 31.03.2021

Abstract

References

  • Abdel Aziz, M. S., Salama, H. E., & Sabaa, M. W. (2018). Biobased alginate/castor oil edible films for active food packaging. LWT, 96, 455-460. doi: https://doi.org/10.1016/j.lwt.2018.05.049
  • Adelakun, O. E., Oyelade, O. J., & Olanipekun, B. F. (2016). Chapter 7 - Use of Essential Oils in Food Preservation. In V. R. Preedy (Ed.), Essential Oils in Food Preservation, Flavor and Safety (pp. 71-84). San Diego: Academic Press.
  • Ahmed, J., Almusallam, A. S., Al-Salman, F., AbdulRahman, M. H., & Al-Salem, E. (2013). Rheological properties of water insoluble date fiber incorporated wheat flour dough. LWT - Food Science and Technology, 51(2), 409-416. doi: https://doi.org/10.1016/j.lwt.2012.11.018
  • Ahmed, J., Mulla, M. Z., & Arfat, Y. A. (2016). Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control, 69, 196-204. doi: https://doi.org/10.1016/j.foodcont.2016.05.013
  • Alexa, E., Danciu, C., Cocan, I., Negrea, M., Morar, A., Obistioiu, D., Dogaru, D., Berbecea, A., & Radulov, I. (2018). Chemical composition and antimicrobial potential of Satureja hortensis L. in fresh cow cheese. Journal of Food Quality, 2018, 8424035. https://doi.org/10.1155/2018/8424035
  • Alvarez, M. V., Ponce, A. G., & Moreira, M. d. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT - Food Science and Technology, 50(1), 78-87. doi: https://doi.org/10.1016/j.lwt.2012.06.021
  • Ansorena, M. R., Zubeldia, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT - Food Science and Technology, 69, 47-54. doi: https://doi.org/10.1016/j.lwt.2016.01.020
  • Aramouni, F. M., & Abu-Ghoush, M. H. (2011). Physicochemical and sensory characteristics of no-bake wheat–soy snack bars. Journal of the Science of Food and Agriculture, 91(1), 44-51. doi: https://doi.org/10.1002/jsfa.4134
  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265-273. doi: https://doi.org/10.1016/j.foodhyd.2014.04.023
  • Athmaselvi, K., Sumitha, P., & Revathy, B. (2013). Development of Aloe vera based edible coating for tomato. International Agrophysics, 27(4).
  • Aydin, F., Kahve, H. I., & Ardic, M. (2017). Lipid based edible films. Journal of Scientific and Engineering Research, 4(9), 86-92.
  • Bahram, S., Rezaie, M., Soltani, M., Kamali, A., Abdollahi, M., Khezri Ahmadabad, M., & Nemati, M. (2016). Effect of whey protein concentrate coating cinamon oil on quality and shelf life of refrigerated Beluga Sturegeon (Huso huso). Journal of Food Quality, 39(6), 743-749. doi: https://doi.org/10.1111/jfq.12227
  • Basiak, E., Galus, S., & Lenart, A. (2015). Characterisation of composite edible films based on wheat starch and whey-protein isolate. International Journal of Food Science & Technology, 50(2), 372-380. doi: https://doi.org/10.1111/ijfs.12628
  • Benbettaïeb, N., Chambin, O., Assifaoui, A., Al-Assaf, S., Karbowiak, T., & Debeaufort, F. (2016). Release of coumarin incorporated into chitosan-gelatin irradiated films. Food Hydrocolloids, 56, 266-276. doi: https://doi.org/10.1016/j.foodhyd.2015.12.026
  • Benyelles, E., & Bestaoui, I. (2018). Evaluation des additifs alimentaires utilisés dans les boissons gazeuses et de l’état de connaissance des consommateurs dans la région de Tlemcen. PhD Thèse Pharmacie, Universite Abou Bekr Belkaid.
  • Bhagath, Y., & Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. International Food Research Journal, 26(2), 377-392
  • Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17-25. doi: https://doi.org/10.1016/j.fbio.2016.07.003
  • Bonne, R. (2013). Présentation de deux méthodes originales visant à faciliter dans les IAA, la mise en oeuvre des bonnes pratiques d'hygiène et de fabrication ainsi que de la méthode HACCP, telles que définies par le Codex Alimentarius. Université de toulouse, Université de Toulouse III-Paul Sabatier.
  • Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT - Food Science and Technology, 47(1), 39-45. doi: https://doi.org/10.1016/j.lwt.2012.01.005
  • Bravin, B., Peressini, D., & Sensidoni, A. (2006). Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. Journal of Food Engineering, 76(3), 280-290. doi: https://doi.org/10.1016/j.jfoodeng.2005.05.021
  • Cahill, S. M., Upton, M. E., & Mcloughlin, A. J. (2002). Bioencapsulation Technology in Meat Preservation. In A. Durieux & J. P. Simon (Eds.), Applied Microbiology (pp. 239-266). Dordrecht: Springer Netherlands.
  • Caillet, S., & Lacroix, M. (2007). Les huiles essentielles: leurs propriétés antimicrobiennes et leurs applications potentielles en alimentaire. INRS-Institut Armand-Frappier, RESALA, 1-8.
  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. https://doi.org/10.1007/s11947-010-0434-1
  • Cerqueira, M. A., Lima, A. M., Souza, B. W. S., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57(4), 1456-1462. https://doi.org/10.1021/jf802726d
  • Chamanara, V., Shabanpour, B., Gorgin, S., & Khomeiri, M. (2012). An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil. International Journal of Biological Macromolecules, 50(3), 540-544. doi: https://doi.org/10.1016/j.ijbiomac.2012.01.016
  • Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), 2039.
  • Chidanandaiah, Keshri, R. C., & Sanyal, M. K. (2009). Effect of sodium alginate coating with preservatives on the quality of meat patties during refrigerated (4±1 C) storage. Journal of Muscle Foods, 20(3), 275-292. https://doi.org/10.1111/j.1745-4573.2009.00147.x
  • Cho, S. Y., Lee, S. Y., & Rhee, C. (2010). Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. LWT - Food Science and Technology, 43(8), 1234-1239. doi: https://doi.org/10.1016/j.lwt.2010.03.014
  • Ciannamea, E. M., Stefani, P. M., & Ruseckaite, R. A. (2016). Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT, 74, 353-362. doi: https://doi.org/10.1016/j.lwt.2016.07.073
  • Costa, C., Lucera, A., Conte, A., Zambrini, A. V., & Del Nobile, M. A. (2017). Technological strategies to preserve burrata cheese quality. Coatings, 7(7), 97.
  • Dan Cristian, V., Oana Lelia, P. O. P., Francisc Vasile, D., & Carmen, S. (2015). Antimicrobial efficiency of edible films in food industry. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2). https://doi.org/10.15835/nbha43210048
  • de Azeredo, H. M. C. (2012). Edible Coatings. Advances in fruit processing technologies, 14, 345-372.
  • Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. doi: https://doi.org/10.1016/j.foodchem.2017.07.034
  • Denavi, G., Tapia-Blacido, D. R., Anon, M. C., Sobral, P. J. A., Mauri, A. N., & Menegalli, F. C. (2009). Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering, 90(3), 341-349. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.001
  • Dhaka, R., & Upadhyay, A. (2018). Edible films and coatings: a brief overview. The Pharma Innovation Journal, 7(7), 331-333.
  • Di Maio, L., Scarfato, P., Milana, M. R., Feliciani, R., Denaro, M., Padula, G., & Incarnato, L. (2014). Bionanocomposite polylactic acid/organoclay films: Functional properties and measurement of total and lactic acid specific migration. Packaging Technology and Science, 27(7), 535-547.
  • Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81(10), 988-1000. doi: https://doi.org/10.1002/jsfa.883
  • Dursun, S., & Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370-382.
  • Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288. doi: https://doi.org/10.1016/j.meatsci.2010.04.016
  • Fabra, M. J., Talens, P., & Chiralt, A. (2010). Influence of calcium on tensile, optical and water vapour permeability properties of sodium caseinate edible films. Journal of Food Engineering, 96(3), 356-364. doi: https://doi.org/10.1016/j.jfoodeng.2009.08.010
  • Fox, P. F. (1993). Cheese: An Overview. In P. F. Fox (Ed.), Cheese: Chemistry, Physics and Microbiology: Volume 1 General Aspects (pp. 1-36). Boston, MA: Springer US.
  • Gadang, V. P., Hettiarachchy, N. S., Johnson, M. G., & Owens, C. (2008). Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. Journal of Food Science, 73(8), M389-M394. doi: https://doi.org/10.1111/j.1750-3841.2008.00899.x
  • Gaikwad, K. K., & Lee, Y. S. (2017). Effect of storage conditions on the absorption kinetics of non-metallic oxygen scavenger suitable for moist food packaging. Journal of Food Measurement and Characterization, 11(3), 965-971. https://doi.org/10.1007/s11694-017-9470-0
  • Galvao, A. M. M. T., Zambelli, R. A., Araujo, A. W. O., & Bastos, M. S. R. (2018). Edible coating based on modified corn starch/tomato powder: Effect on the quality of dough bread. LWT, 89, 518-524. doi: https://doi.org/10.1016/j.lwt.2017.11.027
  • Genskowsky, E., Puente, L. A., Pérez-Álvarez, J. A., Fernandez-Lopez, J., Muñoz, L. A., & Viuda-Martos, M. (2015). Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT - Food Science and Technology, 64(2), 1057-1062. doi: https://doi.org/10.1016/j.lwt.2015.07.026
  • Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48(1), 44-49. doi: https://doi.org/10.1016/j.ijbiomac.2010.09.014
  • Ghasemi, S., Javadi, N. H. S., Moradi, M., & Khosravi-Darani, K. (2015). Application of zein antimicrobial edible film incorporating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. African Journal of Biotechnology, 14(24), 2014-2021.
  • Giancone, T., Torrieri, E., Di Pierro, P., Cavella, S., Giosafatto, C. V. L., & Masi, P. (2011). Effect of surface density on the engineering properties of high methoxyl pectin-based edible films. Food and Bioprocess Technology, 4(7), 1228-1236. https://doi.org/10.1007/s11947-009-0208-9
  • Guerrero, P., O'Sullivan, M. G., Kerry, J. P., & de la Caba, K. (2015). Application of soy protein coatings and their effect on the quality and shelf-life stability of beef patties. [10.1039/C4RA13421D]. RSC Advances, 5(11), 8182-8189. doi: 10.1039/C4RA13421D
  • Guerrero, P., Stefani, P. M., Ruseckaite, R. A., & de la Caba, K. (2011). Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering, 105(1), 65-72. doi: https://doi.org/10.1016/j.jfoodeng.2011.02.003
  • Gurdian, C., Chouljenko, A., Solval, K. M., Boeneke, C., King, J. M., & Sathivel, S. (2017). Application of edible films containing oregano (Origanum vulgare) essential oil on Queso Blanco cheese prepared with flaxseed (Linum usitatissimum) oil. Journal of Food Science, 82(6), 1395-1401. doi: https://doi.org/10.1111/1750-3841.13733
  • Guzun-Cojocaru, T. (2010). Peroxydation des lipides émulsionnés et transfert d'ions fer à l'interface huile/eau stabilisée par des protéines de lait: influence des résidus phosphates et de la stabilité du chélate de fer. Dijon.
  • Güçbilmez, Ç. M., Yemenicioğlu, A., & Arslanoğlu, A. (2007). Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA. Food Research International, 40(1), 80-91. doi: https://doi.org/10.1016/j.foodres.2006.08.007
  • Hamaguchi, P. Y., WuYin, W., & Tanaka, M. (2007). Effect of pH on the formation of edible films made from the muscle proteins of Blue marlin (Makaira mazara). Food Chemistry, 100(3), 914-920. doi: https://doi.org/10.1016/j.foodchem.2005.10.045
  • Hambleton, A., Voilley, A., & Debeaufort, F. (2011). Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocolloids, 25(5), 1128-1133. doi: https://doi.org/10.1016/j.foodhyd.2010.10.010
  • Han, Y., Yu, M., & Wang, L. (2018). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, 15, 35-42. doi: https://doi.org/10.1016/j.fpsl.2017.11.001
  • Hernandez-Izquierdo, V. M., & Krochta, J. M. (2008). Thermoplastic processing of proteins for film formation - A review. Journal of Food Science, 73(2), R30-R39. doi: https://doi.org/10.1111/j.1750-3841.2007.00636.x
  • Hoffman, K. L., Han, I. Y., & Dawson, P. L. (2001). Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. Journal of Food Protection, 64(6), 885-889. https://doi.org/10.4315/0362-028x-64.6.885
  • Jeevahan, J., Chandrasekaran, M., Durairaj, R., Mageshwaran, G., & Joseph, G. B. (2017). A brief review on edible food packing materials. Journal of Global Engineering Problems and Solutions, 1(1), 9-19.
  • Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A Review. Food and Bioprocess Technology, 5(6), 2058-2076. doi: https://doi.org/10.1007/s11947-012-0835-4
  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi: https://doi.org/10.1016/j.jfoodeng.2013.01.010
  • Joffin, C. (2010). Microbiologie alimentaire: Centre régional de documentation pédagogique d'Aquitaine.
  • Just, N., Nyunga, M., Lelong, J., & Wallaert, B. (2005). Allergie immédiate aux glucocorticoïdes de synthèse oraux. La Revue de Médecine Interne, 26(4), 331-334. doi: https://doi.org/10.1016/j.revmed.2004.12.003
  • Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chemistry, 141(2), 1041-1049. doi: https://doi.org/10.1016/j.foodchem.2013.03.103
  • Karbowiak, T., Debeaufort, F., Champion, D., & Voilley, A. (2006). Wetting properties at the surface of iota-carrageenan-based edible films. Journal of Colloid and Interface Science, 294(2), 400-410. doi: https://doi.org/10.1016/j.jcis.2005.07.030
  • Kavas, G., Kavas, N., & Saygili, D. (2015). The effects of thyme and clove essential oil fortified edible films on the physical, chemical and microbiological characteristics of kashar cheese. Journal of Food Quality, 38(6), 405-412. doi: https://doi.org/10.1111/jfq.12157
  • Khwaldia, K., Perez, C., Banon, S., Desobry, S., & Hardy, J. (2004). Milk proteins for edible films and coatings. Critical Reviews in Food Science and Nutrition, 44(4), 239-251. doi: https://doi.org/10.1080/10408690490464906
  • Kittur, F. S., Kumar, K. R., & Tharanathan, R. N. (1998). Functional packaging properties of chitosan films. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206(1), 44-47. doi: https://doi.org/10.1007/s002170050211
  • Kodal Coskun, B., Calikoglu, E., Karagöz Emiroglu, Z., & Candogan, K. (2014). Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. Journal of Food Quality, 37(3), 203-212. doi: https://doi.org/10.1111/jfq.12089
  • Kone, A. P. N. (2018). Stratégies alimentaires naturelles et innovatrices pour améliorer la qualité de la viande de lapin. Philosophiae doctor (Ph. D.) PhD, Universite Laval.
  • Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22(3), 373-386. doi: https://doi.org/10.1016/j.foodhyd.2006.12.003
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2011). Antimicrobial activity of natural agents coated on starch-based films against Staphylococcus aureus. Journal of Food Science, 76(8), M531-M537. doi: https://doi.org/10.1111/j.1750-3841.2011.02344.x
  • Kurt, A., Toker, O. S., & Tornuk, F. (2017). Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. International Journal of Biological Macromolecules, 102, 1035-1044. doi: https://doi.org/10.1016/j.ijbiomac.2017.04.081
  • Lai, H.-M., & Padua, G. W. (1997). Properties and microstructure of plasticized zein films. Cereal Chemistry, 74(6), 771-775. doi: https://doi.org/10.1094/CCHEM.1997.74.6.771
  • Lee, K. Y., Shim, J., & Lee, H. G. (2004). Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 56(2), 251-254. doi: https://doi.org/10.1016/j.carbpol.2003.04.001
  • Liu, D., Nikoo, M., Boran, G., Zhou, P., & Regenstein, J. M. (2015). Collagen and gelatin. Annual Review of Food Science and Technology, 6(1), 527-557. doi: https://doi.org/10.1146/annurev-food-031414-111800
  • LiuLiu, Liu, C.-K., Fishman, M. L., & Hicks, K. B. (2007). Composite films from pectin and fish skin gelatin or soybean flour protein. Journal of Agricultural and Food Chemistry, 55(6), 2349-2355. doi: https://doi.org/10.1021/jf062612u
  • Lucera, A., Mastromatteo, M., Conte, A., Zambrini, A. V., Faccia, M., & Del Nobile, M. A. (2014). Effect of active coating on microbiological and sensory properties of fresh mozzarella cheese. Food Packaging and Shelf Life, 1(1), 25-29. doi: https://doi.org/10.1016/j.fpsl.2013.10.002
  • Maftoonazad, N., & Badii, F. (2009). Use of edible films and coatings to extend the shelf life of food products. Recent Patents on Food, Nutrition & Agriculture, 1(2), 162-170.
  • Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128. doi: https://doi.org/10.1016/j.tifs.2009.12.006
  • Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., Gouldjil, M.B., & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. doi: https://doi.org/10.1016/j.ijbiomac.2019.12.093
  • Mahcene, Z., Khelil, A., Hasni, S., Bozkurt, F., Goudjil, M. B., & Tornuk, F. (2020). Home-made cheese preservation using sodium alginate based on edible film incorporating essential oils. Journal of Food Science and Technology. doi: https://doi.org/10.1007/s13197-020-04753-3
  • Martinez, O., Salmeron, J., Epelde, L., Vicente, M. S., & de Vega, C. (2018). Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control, 85, 168-176. doi: https://doi.org/10.1016/j.foodcont.2017.10.003
  • Mehdizadeh, T., Tajik, H., Razavi Rohani, S. M., & Oromiehie, A. R. (2012). Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Veterinary Research Forum, 3(3), 167-173.
  • Mei, J., Yuan, Y., Wu, Y., & Li, Y. (2013). Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules, 57, 17-21. doi: https://doi.org/10.1016/j.ijbiomac.2013.03.003
  • Memiş, S., Tornuk, F., Bozkurt, F., & Durak, M. Z. (2017). Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International Journal of Biological Macromolecules, 103, 669-675. doi: https://doi.org/10.1016/j.ijbiomac.2017.05.090
  • Mendes de Souza, P., Fernández, A., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids, 24(4), 300-306. doi: https://doi.org/10.1016/j.foodhyd.2009.10.005
  • Miksusanti, M., Herlina, H., & Masril, K. M. K. (2013). Antibacterial and antioxidant of uwi (Dioscorea alata L.) starch edible film incorporated with ginger essential oil. International Journal of Bioscience, Biochemisty and Bioinformatics, 3(4), 354-356.
  • Moradi, M., Tajik, H., Razavi Rohani, S. M., & Mahmoudian, A. (2016). Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT - Food Science and Technology, 72, 37-43. doi: https://doi.org/10.1016/j.lwt.2016.04.026
  • Moreira, M. d. R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT - Food Science and Technology, 44(10), 2335-2341. doi: https://doi.org/10.1016/j.lwt.2011.04.009
  • Nagarajan, M., Benjakul, S., Prodpran, T., & Songtipya, P. (2015). Effects of bio-nanocomposite films from tilapia and squid skin gelatins incorporated with ethanolic extract from coconut husk on storage stability of mackerel meat powder. Food Packaging and Shelf Life, 6, 42-52. doi: https://doi.org/10.1016/j.fpsl.2015.09.001
  • Navarro-Tarazaga, M. L., Massa, A., & Pérez-Gago, M. B. (2011). Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT - Food Science and Technology, 44(10), 2328-2334. doi: https://doi.org/10.1016/j.lwt.2011.03.011
  • Nayik, G. A., Majid, I., & Kumar, V. (2015). Developments in edible films and coatings for the extension of shelf life of fresh fruits. American Journal of Nutrition and Food Science, 2(1), 16-20.
  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986-28006.
  • Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible film and coating applications in fruits and vegetables. Alinteri Journal of Agriculture Science, 33(2), 221-226.
  • Oluwaseun, A. C., Kayode, A., Bolajoko, F. O., & Bunmi, A. J. (2013). Effects of coatings on storability of carrot under evaporative coolant system. Albanian Journal of Agricultural Sciences, 12(3), 485-493.
  • Oses, J., Fabregat-Vazquez, M., Pedroza-Islas, R., Tomas, S. A., Cruz-Orea, A., & Mate, J. I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56-62. doi: https://doi.org/10.1016/j.jfoodeng.2008.10.029
  • Ou, S., Kwok, K. C., & Kang, Y. (2004). Changes in in vitro digestibility and available lysine of soy protein isolate after formation of film. Journal of Food Engineering, 64(3), 301-305. doi: https://doi.org/10.1016/j.jfoodeng.2003.10.013
  • Pal, M., & Devrani, M. (2018). Application of various techniques for meat preservation. Journal of Experimental Food Chemistry, 4(134), 2472-0542.
  • Phan, T. D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973-981. doi: https://doi.org/10.1021/jf040309s
  • Pintado, C. M. B. S., Ferreira, M. A. S. S., & Sousa, I. (2009). Properties of whey protein–based films containing organic acids and nisin to control Listeria monocytogenes. Journal of Food Protection, 72(9), 1891-1896. doi: https://doi.org/10.4315/0362-028x-72.9.1891
  • Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products Preservation. The Scientific World Journal, 2014, 248935. doi: https://doi.org/10.1155/2014/248935
  • Saputra, E., Kismiyati, H. P., Annur Ahadi, A., & Mochammad Amin, A. (2015). An edible film characteristic of chitosan made from shrimp waste as a plasticizer. Journal of Natural Sciences Research, 5(4), 118-124.
  • Shokri, S., & Ehsani, A. (2017). Efficacy of whey protein coating incorporated with lactoperoxidase and α-tocopherol in shelf life extension of Pike-Perch fillets during refrigeration. LWT - Food Science and Technology, 85, 225-231. doi: https://doi.org/10.1016/j.lwt.2017.07.026
  • Sirvio, J. A., Kolehmainen, A., Liimatainen, H., Niinimäki, J., & Hormi, O. E. O. (2014). Biocomposite cellulose-alginate films: Promising packaging materials. Food Chemistry, 151, 343-351. doi: https://doi.org/10.1016/j.foodchem.2013.11.037
  • Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781-785. doi: https://doi.org/10.1016/j.foodres.2008.04.007
  • Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22(3), 608-615. doi: https://doi.org/10.1016/j.foodcont.2010.10.012
  • Suput, D. Z., Lazic, V. L., Popovic, S. Z., & Hromis, N. M. (2015). Edible films and coatings: Sources, properties and application. Food and Feed Research, 42(1), 11-22.
  • Swain, S. N., Biswal, S. M., Nanda, P. K., & Nayak, P. L. (2004). Biodegradable Soy-Based Plastics: Opportunities and Challenges. Journal of Polymers and the Environment, 12(1), 35-42. doi: 10.1023/B:JOOE.0000003126.14448.04
  • Talens, P., Perez-Masia, R., Fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112(1), 86-93. doi: https://doi.org/10.1016/j.jfoodeng.2012.03.022
  • Tammineni, N., Ünlü, G., & Min, S. C. (2013). Development of antimicrobial potato peel waste-based edible films with oregano essential oil to inhibit Listeria monocytogenes on cold-smoked salmon. International Journal of Food Science & Technology, 48(1), 211-214. doi: https://doi.org/10.1111/j.1365-2621.2012.03156.x
  • Tanada-Palmu, P. S., & Grosso, C. R. F. (2003). Development and characterization of edible films based on gluten from semi-hard and soft Brazilian wheat flours (development of films based on gluten from wheat flours). Food Science and Technology, 23, 264-269.
  • Ture, H., Eroglu, E., Ozen, B., & Soyer, F. (2011). Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese. International Journal of Food Science & Technology, 46(1), 154-160. doi: https://doi.org/10.1111/j.1365-2621.2010.02465.x
  • Ünalan, İ. U., Arcan, I., Korel, F., & Yemenicioğlu, A. (2013). Application of active zein-based films with controlled release properties to control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innovative Food Science & Emerging Technologies, 20, 208-214. doi: https://doi.org/10.1016/j.ifset.2013.08.004
  • Valdes, A., Burgos, N., Jiménez, A., & Garrigos, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865-886.
  • Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi: https://doi.org/10.1016/j.foodhyd.2012.11.029
  • Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185-192. doi: https://doi.org/10.1016/j.aaf.2017.06.004
  • Youssef, A. M., Assem, F. M., El-Sayed, S. M., Salama, H., & Abd El-Salam, M. H. (2017). Utilization of edible films and coatings as packaging materials for preservation of cheeses. Journal of Packaging Technology and Research, 1(2), 87-99. doi: https://doi.org/10.1007/s41783-017-0012-3
  • Zubeldia, F., Ansorena, M. R., & Marcovich, N. E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing, 43, 68-77. doi: https://doi.org/10.1016/j.polymertesting.2015.02.001

Food edible coating systems: A review

Year 2021, Volume: 2 Issue: 1, 26 - 33, 31.03.2021

Abstract

In order to extend the product shelf life while preserving quality scientific attention fo-cused on researching food packaging materials, in particular: petrochemical polymers, widely used for food packaging, are non-renewable and non-biodegradable. However, it is therefore necessary to find alternative packaging materials which are renewable and easily degradable. Edible polymers are generally classified into polysaccharides, proteins and lipids. Although, in order to obtain active packaging functions, antioxidants and antimicrobial agents can also be incorporated in film-forming solutions in order to protect food products from oxidation and microbial deterioration, resulting in improved quality and increased security. The objective of this work was to review the recently studied edible films and coatings - their sources, proper-ties and possible application. It can be concluded that edible films should be chosen for food packaging purposes specific applications, types of food products and the main mechanisms of quality degradation.

References

  • Abdel Aziz, M. S., Salama, H. E., & Sabaa, M. W. (2018). Biobased alginate/castor oil edible films for active food packaging. LWT, 96, 455-460. doi: https://doi.org/10.1016/j.lwt.2018.05.049
  • Adelakun, O. E., Oyelade, O. J., & Olanipekun, B. F. (2016). Chapter 7 - Use of Essential Oils in Food Preservation. In V. R. Preedy (Ed.), Essential Oils in Food Preservation, Flavor and Safety (pp. 71-84). San Diego: Academic Press.
  • Ahmed, J., Almusallam, A. S., Al-Salman, F., AbdulRahman, M. H., & Al-Salem, E. (2013). Rheological properties of water insoluble date fiber incorporated wheat flour dough. LWT - Food Science and Technology, 51(2), 409-416. doi: https://doi.org/10.1016/j.lwt.2012.11.018
  • Ahmed, J., Mulla, M. Z., & Arfat, Y. A. (2016). Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control, 69, 196-204. doi: https://doi.org/10.1016/j.foodcont.2016.05.013
  • Alexa, E., Danciu, C., Cocan, I., Negrea, M., Morar, A., Obistioiu, D., Dogaru, D., Berbecea, A., & Radulov, I. (2018). Chemical composition and antimicrobial potential of Satureja hortensis L. in fresh cow cheese. Journal of Food Quality, 2018, 8424035. https://doi.org/10.1155/2018/8424035
  • Alvarez, M. V., Ponce, A. G., & Moreira, M. d. R. (2013). Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT - Food Science and Technology, 50(1), 78-87. doi: https://doi.org/10.1016/j.lwt.2012.06.021
  • Ansorena, M. R., Zubeldia, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT - Food Science and Technology, 69, 47-54. doi: https://doi.org/10.1016/j.lwt.2016.01.020
  • Aramouni, F. M., & Abu-Ghoush, M. H. (2011). Physicochemical and sensory characteristics of no-bake wheat–soy snack bars. Journal of the Science of Food and Agriculture, 91(1), 44-51. doi: https://doi.org/10.1002/jsfa.4134
  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265-273. doi: https://doi.org/10.1016/j.foodhyd.2014.04.023
  • Athmaselvi, K., Sumitha, P., & Revathy, B. (2013). Development of Aloe vera based edible coating for tomato. International Agrophysics, 27(4).
  • Aydin, F., Kahve, H. I., & Ardic, M. (2017). Lipid based edible films. Journal of Scientific and Engineering Research, 4(9), 86-92.
  • Bahram, S., Rezaie, M., Soltani, M., Kamali, A., Abdollahi, M., Khezri Ahmadabad, M., & Nemati, M. (2016). Effect of whey protein concentrate coating cinamon oil on quality and shelf life of refrigerated Beluga Sturegeon (Huso huso). Journal of Food Quality, 39(6), 743-749. doi: https://doi.org/10.1111/jfq.12227
  • Basiak, E., Galus, S., & Lenart, A. (2015). Characterisation of composite edible films based on wheat starch and whey-protein isolate. International Journal of Food Science & Technology, 50(2), 372-380. doi: https://doi.org/10.1111/ijfs.12628
  • Benbettaïeb, N., Chambin, O., Assifaoui, A., Al-Assaf, S., Karbowiak, T., & Debeaufort, F. (2016). Release of coumarin incorporated into chitosan-gelatin irradiated films. Food Hydrocolloids, 56, 266-276. doi: https://doi.org/10.1016/j.foodhyd.2015.12.026
  • Benyelles, E., & Bestaoui, I. (2018). Evaluation des additifs alimentaires utilisés dans les boissons gazeuses et de l’état de connaissance des consommateurs dans la région de Tlemcen. PhD Thèse Pharmacie, Universite Abou Bekr Belkaid.
  • Bhagath, Y., & Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. International Food Research Journal, 26(2), 377-392
  • Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17-25. doi: https://doi.org/10.1016/j.fbio.2016.07.003
  • Bonne, R. (2013). Présentation de deux méthodes originales visant à faciliter dans les IAA, la mise en oeuvre des bonnes pratiques d'hygiène et de fabrication ainsi que de la méthode HACCP, telles que définies par le Codex Alimentarius. Université de toulouse, Université de Toulouse III-Paul Sabatier.
  • Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT - Food Science and Technology, 47(1), 39-45. doi: https://doi.org/10.1016/j.lwt.2012.01.005
  • Bravin, B., Peressini, D., & Sensidoni, A. (2006). Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. Journal of Food Engineering, 76(3), 280-290. doi: https://doi.org/10.1016/j.jfoodeng.2005.05.021
  • Cahill, S. M., Upton, M. E., & Mcloughlin, A. J. (2002). Bioencapsulation Technology in Meat Preservation. In A. Durieux & J. P. Simon (Eds.), Applied Microbiology (pp. 239-266). Dordrecht: Springer Netherlands.
  • Caillet, S., & Lacroix, M. (2007). Les huiles essentielles: leurs propriétés antimicrobiennes et leurs applications potentielles en alimentaire. INRS-Institut Armand-Frappier, RESALA, 1-8.
  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. https://doi.org/10.1007/s11947-010-0434-1
  • Cerqueira, M. A., Lima, A. M., Souza, B. W. S., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57(4), 1456-1462. https://doi.org/10.1021/jf802726d
  • Chamanara, V., Shabanpour, B., Gorgin, S., & Khomeiri, M. (2012). An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil. International Journal of Biological Macromolecules, 50(3), 540-544. doi: https://doi.org/10.1016/j.ijbiomac.2012.01.016
  • Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), 2039.
  • Chidanandaiah, Keshri, R. C., & Sanyal, M. K. (2009). Effect of sodium alginate coating with preservatives on the quality of meat patties during refrigerated (4±1 C) storage. Journal of Muscle Foods, 20(3), 275-292. https://doi.org/10.1111/j.1745-4573.2009.00147.x
  • Cho, S. Y., Lee, S. Y., & Rhee, C. (2010). Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. LWT - Food Science and Technology, 43(8), 1234-1239. doi: https://doi.org/10.1016/j.lwt.2010.03.014
  • Ciannamea, E. M., Stefani, P. M., & Ruseckaite, R. A. (2016). Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT, 74, 353-362. doi: https://doi.org/10.1016/j.lwt.2016.07.073
  • Costa, C., Lucera, A., Conte, A., Zambrini, A. V., & Del Nobile, M. A. (2017). Technological strategies to preserve burrata cheese quality. Coatings, 7(7), 97.
  • Dan Cristian, V., Oana Lelia, P. O. P., Francisc Vasile, D., & Carmen, S. (2015). Antimicrobial efficiency of edible films in food industry. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2). https://doi.org/10.15835/nbha43210048
  • de Azeredo, H. M. C. (2012). Edible Coatings. Advances in fruit processing technologies, 14, 345-372.
  • Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. doi: https://doi.org/10.1016/j.foodchem.2017.07.034
  • Denavi, G., Tapia-Blacido, D. R., Anon, M. C., Sobral, P. J. A., Mauri, A. N., & Menegalli, F. C. (2009). Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering, 90(3), 341-349. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.001
  • Dhaka, R., & Upadhyay, A. (2018). Edible films and coatings: a brief overview. The Pharma Innovation Journal, 7(7), 331-333.
  • Di Maio, L., Scarfato, P., Milana, M. R., Feliciani, R., Denaro, M., Padula, G., & Incarnato, L. (2014). Bionanocomposite polylactic acid/organoclay films: Functional properties and measurement of total and lactic acid specific migration. Packaging Technology and Science, 27(7), 535-547.
  • Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81(10), 988-1000. doi: https://doi.org/10.1002/jsfa.883
  • Dursun, S., & Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370-382.
  • Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288. doi: https://doi.org/10.1016/j.meatsci.2010.04.016
  • Fabra, M. J., Talens, P., & Chiralt, A. (2010). Influence of calcium on tensile, optical and water vapour permeability properties of sodium caseinate edible films. Journal of Food Engineering, 96(3), 356-364. doi: https://doi.org/10.1016/j.jfoodeng.2009.08.010
  • Fox, P. F. (1993). Cheese: An Overview. In P. F. Fox (Ed.), Cheese: Chemistry, Physics and Microbiology: Volume 1 General Aspects (pp. 1-36). Boston, MA: Springer US.
  • Gadang, V. P., Hettiarachchy, N. S., Johnson, M. G., & Owens, C. (2008). Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. Journal of Food Science, 73(8), M389-M394. doi: https://doi.org/10.1111/j.1750-3841.2008.00899.x
  • Gaikwad, K. K., & Lee, Y. S. (2017). Effect of storage conditions on the absorption kinetics of non-metallic oxygen scavenger suitable for moist food packaging. Journal of Food Measurement and Characterization, 11(3), 965-971. https://doi.org/10.1007/s11694-017-9470-0
  • Galvao, A. M. M. T., Zambelli, R. A., Araujo, A. W. O., & Bastos, M. S. R. (2018). Edible coating based on modified corn starch/tomato powder: Effect on the quality of dough bread. LWT, 89, 518-524. doi: https://doi.org/10.1016/j.lwt.2017.11.027
  • Genskowsky, E., Puente, L. A., Pérez-Álvarez, J. A., Fernandez-Lopez, J., Muñoz, L. A., & Viuda-Martos, M. (2015). Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT - Food Science and Technology, 64(2), 1057-1062. doi: https://doi.org/10.1016/j.lwt.2015.07.026
  • Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48(1), 44-49. doi: https://doi.org/10.1016/j.ijbiomac.2010.09.014
  • Ghasemi, S., Javadi, N. H. S., Moradi, M., & Khosravi-Darani, K. (2015). Application of zein antimicrobial edible film incorporating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. African Journal of Biotechnology, 14(24), 2014-2021.
  • Giancone, T., Torrieri, E., Di Pierro, P., Cavella, S., Giosafatto, C. V. L., & Masi, P. (2011). Effect of surface density on the engineering properties of high methoxyl pectin-based edible films. Food and Bioprocess Technology, 4(7), 1228-1236. https://doi.org/10.1007/s11947-009-0208-9
  • Guerrero, P., O'Sullivan, M. G., Kerry, J. P., & de la Caba, K. (2015). Application of soy protein coatings and their effect on the quality and shelf-life stability of beef patties. [10.1039/C4RA13421D]. RSC Advances, 5(11), 8182-8189. doi: 10.1039/C4RA13421D
  • Guerrero, P., Stefani, P. M., Ruseckaite, R. A., & de la Caba, K. (2011). Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering, 105(1), 65-72. doi: https://doi.org/10.1016/j.jfoodeng.2011.02.003
  • Gurdian, C., Chouljenko, A., Solval, K. M., Boeneke, C., King, J. M., & Sathivel, S. (2017). Application of edible films containing oregano (Origanum vulgare) essential oil on Queso Blanco cheese prepared with flaxseed (Linum usitatissimum) oil. Journal of Food Science, 82(6), 1395-1401. doi: https://doi.org/10.1111/1750-3841.13733
  • Guzun-Cojocaru, T. (2010). Peroxydation des lipides émulsionnés et transfert d'ions fer à l'interface huile/eau stabilisée par des protéines de lait: influence des résidus phosphates et de la stabilité du chélate de fer. Dijon.
  • Güçbilmez, Ç. M., Yemenicioğlu, A., & Arslanoğlu, A. (2007). Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA. Food Research International, 40(1), 80-91. doi: https://doi.org/10.1016/j.foodres.2006.08.007
  • Hamaguchi, P. Y., WuYin, W., & Tanaka, M. (2007). Effect of pH on the formation of edible films made from the muscle proteins of Blue marlin (Makaira mazara). Food Chemistry, 100(3), 914-920. doi: https://doi.org/10.1016/j.foodchem.2005.10.045
  • Hambleton, A., Voilley, A., & Debeaufort, F. (2011). Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocolloids, 25(5), 1128-1133. doi: https://doi.org/10.1016/j.foodhyd.2010.10.010
  • Han, Y., Yu, M., & Wang, L. (2018). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, 15, 35-42. doi: https://doi.org/10.1016/j.fpsl.2017.11.001
  • Hernandez-Izquierdo, V. M., & Krochta, J. M. (2008). Thermoplastic processing of proteins for film formation - A review. Journal of Food Science, 73(2), R30-R39. doi: https://doi.org/10.1111/j.1750-3841.2007.00636.x
  • Hoffman, K. L., Han, I. Y., & Dawson, P. L. (2001). Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. Journal of Food Protection, 64(6), 885-889. https://doi.org/10.4315/0362-028x-64.6.885
  • Jeevahan, J., Chandrasekaran, M., Durairaj, R., Mageshwaran, G., & Joseph, G. B. (2017). A brief review on edible food packing materials. Journal of Global Engineering Problems and Solutions, 1(1), 9-19.
  • Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A Review. Food and Bioprocess Technology, 5(6), 2058-2076. doi: https://doi.org/10.1007/s11947-012-0835-4
  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi: https://doi.org/10.1016/j.jfoodeng.2013.01.010
  • Joffin, C. (2010). Microbiologie alimentaire: Centre régional de documentation pédagogique d'Aquitaine.
  • Just, N., Nyunga, M., Lelong, J., & Wallaert, B. (2005). Allergie immédiate aux glucocorticoïdes de synthèse oraux. La Revue de Médecine Interne, 26(4), 331-334. doi: https://doi.org/10.1016/j.revmed.2004.12.003
  • Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chemistry, 141(2), 1041-1049. doi: https://doi.org/10.1016/j.foodchem.2013.03.103
  • Karbowiak, T., Debeaufort, F., Champion, D., & Voilley, A. (2006). Wetting properties at the surface of iota-carrageenan-based edible films. Journal of Colloid and Interface Science, 294(2), 400-410. doi: https://doi.org/10.1016/j.jcis.2005.07.030
  • Kavas, G., Kavas, N., & Saygili, D. (2015). The effects of thyme and clove essential oil fortified edible films on the physical, chemical and microbiological characteristics of kashar cheese. Journal of Food Quality, 38(6), 405-412. doi: https://doi.org/10.1111/jfq.12157
  • Khwaldia, K., Perez, C., Banon, S., Desobry, S., & Hardy, J. (2004). Milk proteins for edible films and coatings. Critical Reviews in Food Science and Nutrition, 44(4), 239-251. doi: https://doi.org/10.1080/10408690490464906
  • Kittur, F. S., Kumar, K. R., & Tharanathan, R. N. (1998). Functional packaging properties of chitosan films. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206(1), 44-47. doi: https://doi.org/10.1007/s002170050211
  • Kodal Coskun, B., Calikoglu, E., Karagöz Emiroglu, Z., & Candogan, K. (2014). Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. Journal of Food Quality, 37(3), 203-212. doi: https://doi.org/10.1111/jfq.12089
  • Kone, A. P. N. (2018). Stratégies alimentaires naturelles et innovatrices pour améliorer la qualité de la viande de lapin. Philosophiae doctor (Ph. D.) PhD, Universite Laval.
  • Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22(3), 373-386. doi: https://doi.org/10.1016/j.foodhyd.2006.12.003
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2011). Antimicrobial activity of natural agents coated on starch-based films against Staphylococcus aureus. Journal of Food Science, 76(8), M531-M537. doi: https://doi.org/10.1111/j.1750-3841.2011.02344.x
  • Kurt, A., Toker, O. S., & Tornuk, F. (2017). Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. International Journal of Biological Macromolecules, 102, 1035-1044. doi: https://doi.org/10.1016/j.ijbiomac.2017.04.081
  • Lai, H.-M., & Padua, G. W. (1997). Properties and microstructure of plasticized zein films. Cereal Chemistry, 74(6), 771-775. doi: https://doi.org/10.1094/CCHEM.1997.74.6.771
  • Lee, K. Y., Shim, J., & Lee, H. G. (2004). Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 56(2), 251-254. doi: https://doi.org/10.1016/j.carbpol.2003.04.001
  • Liu, D., Nikoo, M., Boran, G., Zhou, P., & Regenstein, J. M. (2015). Collagen and gelatin. Annual Review of Food Science and Technology, 6(1), 527-557. doi: https://doi.org/10.1146/annurev-food-031414-111800
  • LiuLiu, Liu, C.-K., Fishman, M. L., & Hicks, K. B. (2007). Composite films from pectin and fish skin gelatin or soybean flour protein. Journal of Agricultural and Food Chemistry, 55(6), 2349-2355. doi: https://doi.org/10.1021/jf062612u
  • Lucera, A., Mastromatteo, M., Conte, A., Zambrini, A. V., Faccia, M., & Del Nobile, M. A. (2014). Effect of active coating on microbiological and sensory properties of fresh mozzarella cheese. Food Packaging and Shelf Life, 1(1), 25-29. doi: https://doi.org/10.1016/j.fpsl.2013.10.002
  • Maftoonazad, N., & Badii, F. (2009). Use of edible films and coatings to extend the shelf life of food products. Recent Patents on Food, Nutrition & Agriculture, 1(2), 162-170.
  • Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128. doi: https://doi.org/10.1016/j.tifs.2009.12.006
  • Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., Gouldjil, M.B., & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. doi: https://doi.org/10.1016/j.ijbiomac.2019.12.093
  • Mahcene, Z., Khelil, A., Hasni, S., Bozkurt, F., Goudjil, M. B., & Tornuk, F. (2020). Home-made cheese preservation using sodium alginate based on edible film incorporating essential oils. Journal of Food Science and Technology. doi: https://doi.org/10.1007/s13197-020-04753-3
  • Martinez, O., Salmeron, J., Epelde, L., Vicente, M. S., & de Vega, C. (2018). Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control, 85, 168-176. doi: https://doi.org/10.1016/j.foodcont.2017.10.003
  • Mehdizadeh, T., Tajik, H., Razavi Rohani, S. M., & Oromiehie, A. R. (2012). Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Veterinary Research Forum, 3(3), 167-173.
  • Mei, J., Yuan, Y., Wu, Y., & Li, Y. (2013). Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules, 57, 17-21. doi: https://doi.org/10.1016/j.ijbiomac.2013.03.003
  • Memiş, S., Tornuk, F., Bozkurt, F., & Durak, M. Z. (2017). Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International Journal of Biological Macromolecules, 103, 669-675. doi: https://doi.org/10.1016/j.ijbiomac.2017.05.090
  • Mendes de Souza, P., Fernández, A., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids, 24(4), 300-306. doi: https://doi.org/10.1016/j.foodhyd.2009.10.005
  • Miksusanti, M., Herlina, H., & Masril, K. M. K. (2013). Antibacterial and antioxidant of uwi (Dioscorea alata L.) starch edible film incorporated with ginger essential oil. International Journal of Bioscience, Biochemisty and Bioinformatics, 3(4), 354-356.
  • Moradi, M., Tajik, H., Razavi Rohani, S. M., & Mahmoudian, A. (2016). Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT - Food Science and Technology, 72, 37-43. doi: https://doi.org/10.1016/j.lwt.2016.04.026
  • Moreira, M. d. R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT - Food Science and Technology, 44(10), 2335-2341. doi: https://doi.org/10.1016/j.lwt.2011.04.009
  • Nagarajan, M., Benjakul, S., Prodpran, T., & Songtipya, P. (2015). Effects of bio-nanocomposite films from tilapia and squid skin gelatins incorporated with ethanolic extract from coconut husk on storage stability of mackerel meat powder. Food Packaging and Shelf Life, 6, 42-52. doi: https://doi.org/10.1016/j.fpsl.2015.09.001
  • Navarro-Tarazaga, M. L., Massa, A., & Pérez-Gago, M. B. (2011). Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT - Food Science and Technology, 44(10), 2328-2334. doi: https://doi.org/10.1016/j.lwt.2011.03.011
  • Nayik, G. A., Majid, I., & Kumar, V. (2015). Developments in edible films and coatings for the extension of shelf life of fresh fruits. American Journal of Nutrition and Food Science, 2(1), 16-20.
  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986-28006.
  • Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible film and coating applications in fruits and vegetables. Alinteri Journal of Agriculture Science, 33(2), 221-226.
  • Oluwaseun, A. C., Kayode, A., Bolajoko, F. O., & Bunmi, A. J. (2013). Effects of coatings on storability of carrot under evaporative coolant system. Albanian Journal of Agricultural Sciences, 12(3), 485-493.
  • Oses, J., Fabregat-Vazquez, M., Pedroza-Islas, R., Tomas, S. A., Cruz-Orea, A., & Mate, J. I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56-62. doi: https://doi.org/10.1016/j.jfoodeng.2008.10.029
  • Ou, S., Kwok, K. C., & Kang, Y. (2004). Changes in in vitro digestibility and available lysine of soy protein isolate after formation of film. Journal of Food Engineering, 64(3), 301-305. doi: https://doi.org/10.1016/j.jfoodeng.2003.10.013
  • Pal, M., & Devrani, M. (2018). Application of various techniques for meat preservation. Journal of Experimental Food Chemistry, 4(134), 2472-0542.
  • Phan, T. D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973-981. doi: https://doi.org/10.1021/jf040309s
  • Pintado, C. M. B. S., Ferreira, M. A. S. S., & Sousa, I. (2009). Properties of whey protein–based films containing organic acids and nisin to control Listeria monocytogenes. Journal of Food Protection, 72(9), 1891-1896. doi: https://doi.org/10.4315/0362-028x-72.9.1891
  • Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products Preservation. The Scientific World Journal, 2014, 248935. doi: https://doi.org/10.1155/2014/248935
  • Saputra, E., Kismiyati, H. P., Annur Ahadi, A., & Mochammad Amin, A. (2015). An edible film characteristic of chitosan made from shrimp waste as a plasticizer. Journal of Natural Sciences Research, 5(4), 118-124.
  • Shokri, S., & Ehsani, A. (2017). Efficacy of whey protein coating incorporated with lactoperoxidase and α-tocopherol in shelf life extension of Pike-Perch fillets during refrigeration. LWT - Food Science and Technology, 85, 225-231. doi: https://doi.org/10.1016/j.lwt.2017.07.026
  • Sirvio, J. A., Kolehmainen, A., Liimatainen, H., Niinimäki, J., & Hormi, O. E. O. (2014). Biocomposite cellulose-alginate films: Promising packaging materials. Food Chemistry, 151, 343-351. doi: https://doi.org/10.1016/j.foodchem.2013.11.037
  • Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781-785. doi: https://doi.org/10.1016/j.foodres.2008.04.007
  • Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22(3), 608-615. doi: https://doi.org/10.1016/j.foodcont.2010.10.012
  • Suput, D. Z., Lazic, V. L., Popovic, S. Z., & Hromis, N. M. (2015). Edible films and coatings: Sources, properties and application. Food and Feed Research, 42(1), 11-22.
  • Swain, S. N., Biswal, S. M., Nanda, P. K., & Nayak, P. L. (2004). Biodegradable Soy-Based Plastics: Opportunities and Challenges. Journal of Polymers and the Environment, 12(1), 35-42. doi: 10.1023/B:JOOE.0000003126.14448.04
  • Talens, P., Perez-Masia, R., Fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112(1), 86-93. doi: https://doi.org/10.1016/j.jfoodeng.2012.03.022
  • Tammineni, N., Ünlü, G., & Min, S. C. (2013). Development of antimicrobial potato peel waste-based edible films with oregano essential oil to inhibit Listeria monocytogenes on cold-smoked salmon. International Journal of Food Science & Technology, 48(1), 211-214. doi: https://doi.org/10.1111/j.1365-2621.2012.03156.x
  • Tanada-Palmu, P. S., & Grosso, C. R. F. (2003). Development and characterization of edible films based on gluten from semi-hard and soft Brazilian wheat flours (development of films based on gluten from wheat flours). Food Science and Technology, 23, 264-269.
  • Ture, H., Eroglu, E., Ozen, B., & Soyer, F. (2011). Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roquefortii on fresh kashar cheese. International Journal of Food Science & Technology, 46(1), 154-160. doi: https://doi.org/10.1111/j.1365-2621.2010.02465.x
  • Ünalan, İ. U., Arcan, I., Korel, F., & Yemenicioğlu, A. (2013). Application of active zein-based films with controlled release properties to control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innovative Food Science & Emerging Technologies, 20, 208-214. doi: https://doi.org/10.1016/j.ifset.2013.08.004
  • Valdes, A., Burgos, N., Jiménez, A., & Garrigos, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865-886.
  • Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi: https://doi.org/10.1016/j.foodhyd.2012.11.029
  • Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185-192. doi: https://doi.org/10.1016/j.aaf.2017.06.004
  • Youssef, A. M., Assem, F. M., El-Sayed, S. M., Salama, H., & Abd El-Salam, M. H. (2017). Utilization of edible films and coatings as packaging materials for preservation of cheeses. Journal of Packaging Technology and Research, 1(2), 87-99. doi: https://doi.org/10.1007/s41783-017-0012-3
  • Zubeldia, F., Ansorena, M. R., & Marcovich, N. E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing, 43, 68-77. doi: https://doi.org/10.1016/j.polymertesting.2015.02.001
There are 119 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review
Authors

Zineb Mahcene 0000-0003-0621-0634

Sara Hasnı This is me

Mohamed Bilal Goudjil This is me

Aminata Khelil This is me

Publication Date March 31, 2021
Submission Date January 22, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Mahcene, Z., Hasnı, S., Goudjil, M. B., Khelil, A. (2021). Food edible coating systems: A review. European Food Science and Engineering, 2(1), 26-33.