Research Article
BibTex RIS Cite

Öğretmen Adaylarının Yapay Zekâya Yönelik Tutum ve Kaygılarının Çeşitli Değişkenler Açısından Betimsel Analizi

Year 2025, Volume: 26 Issue: 2, 226 - 245, 28.07.2025
https://doi.org/10.12984/egeefd.1625648

Abstract

Yapay zekâ (YZ), günümüzde eğitim dahil birçok alanda devrim yaratma potansiyeli taşıyan bir teknolojidir. Özellikle eğitimde, öğrenme süreçlerini kişiselleştirme, öğrenci verilerini analiz etme ve öğretmenleri destekleme gibi pek çok alanda kullanılmaya başlanmıştır. Ancak, bu yeni teknolojinin eğitimdeki etkileri ve öğretmen adaylarının bu duruma yönelik tutumları henüz tam olarak anlaşılmış değildir. Bu çalışmanın amacı, öğretmen adaylarının YZ’ya yönelik tutum ve kaygı düzeylerini belirlemek ve bu düzeyleri etkileyen faktörleri betimsel bir tarama araştırması ile incelemektir. Araştırmada, öğretmenlerin YZ’ya yönelik tutum ve kaygıları cinsiyet, öğretmenlik alanı, sınıf düzeyi ve deneyim sahibi olma değişkenleri açısından incelenmiştir. Elde edilen bulgulara göre YZ deneyimi olan öğretmen adayları, YZ'ya daha çok kendi yerlerine iş yapacak bir rol yüklerken, çıktılara da güvenmektedir. Ancak bazı adaylar, YZ'yı yardımcı olarak görüp yanıtlarını kontrol etme ihtiyacı duymaktadır. Ölçeklerden elde edilen sonuçlara göre; erkek öğretmen adayları kadınlara göre YZ’ya daha olumlu yaklaşmaktadır. Kadın öğretmen adayları ise daha fazla kaygı duymaktadır. YZ’yı daha önce deneyimleyen öğretmen adayları, bu teknolojiye karşı daha olumlu tutum sergilemekte ve daha az kaygı duymaktadır. Öğretmenlik alanı ve sınıf düzeyi ise öğretmenlerin tutum ve kaygı düzeyleri üzerinde anlamlı bir farklılık yaratmamaktadır. Elde edilen bulgular neticesinde öğretmenlik programlarına YZ’ya yönelik derslerin eklenmesi ve YZ’yı kullanmada kadın öğretmen adaylarının teşvik edilmesi önerilmektedir.

Ethical Statement

Bu araştırma, Erzincan Binali Yıldırım Üniversitesi Rektörlüğü Eğitim Bilimleri Etik Kurulu’nun 28/06/2024 tarihli ve 11/03 sayılı kararı ile alınan izinle yürütülmüştür.

References

  • Aghaziarati, A., Nejatifar, S., & Abedi, A. (2023). Artificial Intelligence in Education: Investigating Teacher Attitudes. AI and Tech in Behavioral and Social Sciences, 1(1), 35-42. DOI: https://doi.org/10.61838/kman.aitech.1.1.6
  • Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., & Hyder, S. I. (2021). Artificial intelligence and its role in education. Sustainability, 13(22), 12902. https://doi.org/10.3390/ su132212902
  • Akgün, M., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. Contemporary Educational Technology, 10(4), 381-388. https://doi.org/10.1007/s43681-021-00096-7
  • Aliabadi, R., Singh, A., & Wilson, E. (2023, June). Transdisciplinary AI education: The confluence of curricular and community needs in the instruction of artificial intelligence. In International Conference on Artificial Intelligence in Education Technology (pp. 137-151). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7947-9_11
  • Alotaibi, N. S., & Alshehri, A. H. (2023). Prospers and Obstacles in Using Artificial Intelligence in Saudi Arabia Higher Education Institutions—The Potential of AI-Based Learning Outcomes. Sustainability, 15(13), 10723. https://doi.org/10.3390/su151310723
  • Ardıç, M. A. (2021). Ortaöğretim öğretmenlerinin eğitimde teknoloji kullanımına yönelik tutumlarının incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 10(2), 649-675. http://dx.doi.org/10.30703/cije.748219
  • Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.2139/ssrn.4337484.
  • Banaz, E., & Maden, S. (2024). Türkçe Öğretmen Adaylarının Yapay Zekâ Tutumlarının Farklı Değişkenler Açısından İncelenmesi. Trakya Eğitim Dergisi, 14(2), 1173-1180. https://doi.org/10.24315/tred.1430419
  • Benhamou, S. (2020). Artificial intelligence and the future of work. Revue d'économie industrielle, (169), 57-88. DOI: https://doi.org/10.4000/rei.8727
  • Berner, J., Dallora, A. L., Palm, B., Sanmartin Berglund, J., & Anderberg, P. (2023). Five-factor model, technology enthusiasm and technology anxiety. Digital Health, 9. https://doi.org/10.1177/20552076231203.
  • Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In K. Frankish & W. M. Ramsey (Eds.), The Cambridge handbook of artificial intelligence (pp. 316–334). Cambridge University Press
  • Büyüköztürk, Ş. (2011) Sosyal Bilimler İçin Veri Analizi El Kitabı. 14. Baskı, Pegem Akademi.
  • Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers & Education, 105, 1-13. https://doi.org/10.1016/j.compedu.2016.11.003
  • Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia computer science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
  • Christensen, R., & Knezek, G. (2017). Readiness for integrating mobile learning in the classroom: Challenges, preferences and possibilities. Computers in human Behavior, 76, 112-121. https://doi.org/10.1016/j.chb.2017.07.01
  • Cooper, J. (2006). The digital divide: The special case of gender. Journal of computer assisted learning, 22(5), 320-334. https://doi.org/10.1111/j.1365-2729.2006.00185.x
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative and mixed method approaches (4th ed.). Sage.
  • Çam, M. B., Çelik, N. C., Güntepe, E. T., & Durukan, Ü. G. (2021). Öğretmen adaylarının yapay zekâ teknolojileri ile ilgili farkındalıklarının belirlenmesi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(48), 263-285.
  • Davis, F. D. (1989). Technology Acceptance Model: TAM. In M. N. Al-Suqri, & A. S. Al-Aufi (Eds.), Information Seeking Behavior and Technology Adoption (pp. 205-219). IGI Global.
  • Denis, D. J. (2019). SPSS data analysis for univariate, bivariate, and multivariate statistics. John Wiley & Sons.
  • Deniz, S. S. (2022). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. Socıal Mentalıty And Researcher Thınkers Journal (SMART JOURNAL), 8(63), 1675-1677. https://doi.org/10.29228/smryj.64393
  • Dikmen, S., & Bahçeci, F. (2024). Eğitim Bilimleri Alanında Yapay Zekâ Konulu Bilimsel Yayınların Eğilimleri: Bibliyometrik Bir İnceleme. Socrates Journal of Interdisciplinary Social Researches, 10(46), 98-112. Doi: 10.5281/zenodo.13981118
  • Erdoğan, Ş., & Bozkurt, E. (2023). Examining the Perceptions of Prospective Physics Teachers on the Concept of “Artificial Intelligence”: A Metaphor Study. Journal of Civilization and Society, 7(2), 152-163. http://dx.doi.org/10.51117/metder.2023.41
  • Fishbein, M. and Ajzen, I. (1975) Belief, Attitude, Intention, and Behavior. New York: Wiley
  • Fošner, A. (2024). University Students’ attitudes and perceptions towards AI tools: Implications for sustainable Educational practices. Sustainability, 16(19), 8668. https://doi.org/10.3390/su16198668
  • Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). Educational research: Competencies for analysis and applications. Pearson.
  • Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Quarterly, 21(4), 389-400. https://doi.org/10.2307/249720
  • Gocen, A., & Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13-21. https://doi.org/10.2478/rem-2020-0003
  • Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4), 597-607.
  • Guilherme, A. (2019). Considering AI in Education: Erziehung but Never Bildung. In: Knox, J., Wang, Y., Gallagher, M. (eds) Artificial Intelligence and Inclusive Education. Perspectives on Rethinking and Reforming Education. Springer, Singapore. https://doi.org/10.1007/978-981-13-8161-4_10
  • Harry, A. (2023). Role of AI in Education. Interdiciplinary Journal and Hummanity (INJURITY), 2(3), 260-268. https://doi.org/10.58631/injurity.v2i3.52.
  • Haseski, H. I. (2019). What do Turkish pre-service teachers think about artificial intelligence?. International Journal of Computer Science Education in Schools, 3(2), 3-23. https://doi.org/10.21585/ijcses.v3i2.55
  • Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120. https://doi.org/10.1016/j.techfore.2015.12.014
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign.
  • Holmes, W., Bidarra, J., & Simonsen, H. K. (2021). Artificial intelligence in higher education: a roadmap and future perspectives. Forsøg med uddannelsesdigitalisering og hybride formater, 121-138.
  • Hopcan, S., Türkmen, G., & Polat, E. (2024). Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates. Education and Information Technologies, 29(6), 7281-7301. https://doi.org/10.1007/s10639-023-12086-9
  • Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687
  • İşler, B., & Kılıç, M. (2021). Eğitimde Yapay Zekâ Kullanimi ve Gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11. https://doi.org/10.17932/IAU.EJNM.25480200.2021/ejnm_v5i1001
  • Karimi, H., & Khawaja, S. (2023). The Impact of Artificial Intelligence on Higher Education in England. Creative Education, 14, 2405-2415. https://doi.org/10.4236/ce.2023.1412154
  • Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2022). The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal of Human–Computer Interaction, 40(2), 497–514. https://doi.org/10.1080/10447318.2022.2151730
  • Kim, S., Kim, S., Lee, M., & Kim, H. (2020). Review on artificial intelligence education for K-12 students and teachers. The Journal of Korean association of computer education, 23(4), 1-11. https://doi.org/10.32431/kace.2020.23.4.001
  • Köse, B. B., Radıf, H., Uyar, B., Baysal, İ., & Demirci, N. (2024). Öğretmen Görüşlerine Göre Eğitimde Yapay Zekânın Önemi. Journal Of Socıal, Humanıtıes And Admınıstratıve Scıences (JOSHAS), 9(71), 4203-4209. https://doi.org/10.29228/JOSHAS.74125
  • Latif, E., Zhai, X., & Liu, L. (2023). Ai gender bias, disparities, and fairness: Does training data matter?. arXiv preprint arXiv:2312.10833.
  • Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63. https://doi.org/10.1016/j.techsoc.2020.101410
  • Li, N., & Kirkup, G. (2007). Gender and cultural differences in Internet use: A study of China and the UK. Computers & Education, 48(2), 301-317. https://doi.org/10.1016/j.compedu.2005.01.007
  • Liu, M., Ren, Y., Nyagoga, L. M., Stonier, F., Wu, Z., & Yu, L. (2023). Future of education in the era of generative artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools. Future in Educational Research, 1(1), 72-101. https://doi.org/10.1002/fer3.10
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education.
  • Lund, B. D., Mannuru, N. R., & Agbaji, D. (2024). AI anxiety and fear: A look at perspectives of information science students and professionals towards artificial intelligence. Journal of Information Science, 0(0). https://doi.org/10.1177/01655515241282001
  • Manyika, J., Lund, S., Chui, M., Bughin, J., Woetzel, J., Batra, P., Ko, R., Sanghvi, S. McKinsey & Company. (2017). What the future of work will mean for jobs, skills, and wages, McKinsey Global Institute, https://www.mckinsey.com/ featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-futureof-work-will-mean-for-jobs-skills-and-wages
  • Mart, M., & Kaya, G. (2024). Okul öncesi öğretmen adaylarının yapay zekâya yönelik tutumları ve yapay zekâ okur yazarlığı arasındaki ilişkinin incelenmesi. Edutech Research, 2(1), 91-109.
  • Maxwell, J. A. (2016). The validity and reliability of research: A realist perspective. In D. Wyse, L. E. Suter, E. Smith, & N. Selwyn (Eds.), The BERA/SAGE Handbook of Educational research (pp. 116–140). Sage
  • Mellinger, C. D., & Hanson, T. A. (2020). Methodological considerations for survey research: Validity, reliability, and quantitative analysis. Linguistica Antverpiensia, New Series–Themes in Translation Studies, 19. https://doi.org/10.52034/lanstts.v19i0.549
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nd ed). Thousand Oaks, CA: Sage.
  • Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B. P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
  • Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. Journal of Language and Cultural Education, 7(3), 135-153. https://doi.org/10.2478/jolace-2019-0025
  • Pokrivcakova, S. (2023). Pre-service teachers’ attitudes towards artificial intelligence and its integration into EFL teaching and learning. Journal of Language and Cultural Education, 11(3), 100-114. https://doi.org/10.2478/jolace-2023-0031
  • Rosen, L. D., & Weil, M. M. (1995). Computer availability, computer experience, and technophobia among public school teachers. Computers in Human Behavior, 11(1), 9-31.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in human behavior reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin Eğitimde Yapay Zekâ Kullanımına Yönelik Algıları. International Journal of Social and Humanities Sciences Research (JSHSR), 11(106), 845-856. https://doi.org/10.5281/zenodo.11113077
  • Shirin, A. (2022). Artificial Intelligence Technology on Teaching-Learning: Exploring Bangladeshi Teachers’ Perceptions. Embedded Selforganising Systems, 9(4), 3-9. https://doi.org/10.14464/ess.v9i4.553
  • Stein, J. P., Messingschlager, T., Gnambs, T., Hutmacher, F., & Appel, M. (2024). Attitudes towards AI: measurement and associations with personality. Scientific Reports, 14(1), 2909. https://doi.org/10.1038/s41598-024-53335-2
  • Suh, W., & Ahn, S. (2022). Development and validation of a scale measuring student attitudes toward artificial intelligence. Sage Open, 12(2), https://doi.org/10.1177/21582440221100463.
  • Tang, L., & Su, Y. S. (2024). Ethical Implications and Principles of Using Artificial Intelligence Models in the Classroom: A Systematic Literature Review. International Journal of Interactive Multimedia & Artificial Intelligence, 8(5). https://doi.org/10.9781/ijimai.2024.02.010.
  • Tekin, N. (2023). Eğitimde yapay zekâ: Türkiye kaynaklı araştırmaların eğilimleri üzerine bir içerik analizi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(Özel Sayı), 387-411. https://doi.org/10.51119/ereegf.2023.49
  • Teo, T. (2010). A path analysis of pre-service teachers’ attitudes to computer use: Applying and extending the technology acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79. https://doi.org/10.1080/10494820802231327
  • Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432-2440. https://doi.org/10.1016/j.compedu.2011.06.008
  • Terzi, R. (2020). An Adaptation of Artificial Intelligence Anxiety Scale into Turkish: Reliability and Validity Study. International Online Journal of Education and Teaching, 7(4), 1501-1515.
  • Uygun, D. (2024). Teachers' perspectives on artificial intelligence in education. Advances in Mobile Learning Educational Research, 4(1), 931-939. https://doi.org/10.25082/AMLER.2024.01.005
  • VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  • Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887
  • Yeşilyurt, S., Dündar, R., & Demir, R. Z. (2024). Türkiye’de yapay zekâ ve eğitim ilişkisini inceleyen lisansüstü tezlerin analizi: Bir meta sentez çalışması. Journal of Innovative Research in Social Studies. 7(1), 47-73. https://doi.org/10.47503/jirss.1484848
  • Yue, M., Jong, M. S. Y., & Ng, D. T. K. (2024). Understanding K–12 teachers’ technological pedagogical content knowledge readiness and attitudes toward artificial intelligence education. Education and Information Technologies, 1-32. https://doi.org/10.1007/s10639-024-12621-2
  • Yue, M., Jong, M. S.-Y., & Dai, Y. (2022). Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review. Sustainability, 14(23), 15620. https://doi.org/10.3390/su142315620
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. https://doi.org/10.1155/2021/8812542
  • Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. http://dx.doi.org/10.2139/ssrn.3312874.

Descriptive Analysis of Prospective Teachers' Attitudes and Anxiety Towards Artificial Intelligence in Terms of Several Variables

Year 2025, Volume: 26 Issue: 2, 226 - 245, 28.07.2025
https://doi.org/10.12984/egeefd.1625648

Abstract

Artificial intelligence is a technology which carries the potential to create revolutions in many areas including education. In the field of education, artificial intelligence has begun to be used in processes such as personalizing learning processes, analyzing student data, and providing support to teachers. However, the effects of this new technology on education and teacher canditates’ attitudes towards it have not been fully comprehended yet. Therefore, the aim of this study is to examine the attitudes and anxiety levels of prospective teachers towards artificial intelligence in terms of gender, the field of teaching, grade level, and experience through descriptive survey research. According to the findings, prospective teachers with AI experience attribute the AI to a role that will do the work for them and trust the outputs. However, some prospective teachers see the AI as an assistant and feel the need to check their answers. According to the results obtained, male teacher candidates have more positive attitudes than female teacher candidates, while female candidates have higher anxiety levels. In addition, having experience with artificial intelligence has a positive effect on attitude and reduces the anxiety level. The field of teaching and the level of the class does not create a significant difference in the attitude and anxiety levels of teacher candidates. As a result of the findings, it is recommended that courses on artificial intelligence should be added to teaching programs and that female teacher candidates should be encouraged to use artificial intelligence.

Ethical Statement

This research was carried out with the permission received from the Erzincan Binali Yıldırım University Rectorate Educational Sciences Ethics Committee with the decision numbered 11/03 and dated 28/06/2024.

References

  • Aghaziarati, A., Nejatifar, S., & Abedi, A. (2023). Artificial Intelligence in Education: Investigating Teacher Attitudes. AI and Tech in Behavioral and Social Sciences, 1(1), 35-42. DOI: https://doi.org/10.61838/kman.aitech.1.1.6
  • Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., & Hyder, S. I. (2021). Artificial intelligence and its role in education. Sustainability, 13(22), 12902. https://doi.org/10.3390/ su132212902
  • Akgün, M., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. Contemporary Educational Technology, 10(4), 381-388. https://doi.org/10.1007/s43681-021-00096-7
  • Aliabadi, R., Singh, A., & Wilson, E. (2023, June). Transdisciplinary AI education: The confluence of curricular and community needs in the instruction of artificial intelligence. In International Conference on Artificial Intelligence in Education Technology (pp. 137-151). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7947-9_11
  • Alotaibi, N. S., & Alshehri, A. H. (2023). Prospers and Obstacles in Using Artificial Intelligence in Saudi Arabia Higher Education Institutions—The Potential of AI-Based Learning Outcomes. Sustainability, 15(13), 10723. https://doi.org/10.3390/su151310723
  • Ardıç, M. A. (2021). Ortaöğretim öğretmenlerinin eğitimde teknoloji kullanımına yönelik tutumlarının incelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 10(2), 649-675. http://dx.doi.org/10.30703/cije.748219
  • Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.2139/ssrn.4337484.
  • Banaz, E., & Maden, S. (2024). Türkçe Öğretmen Adaylarının Yapay Zekâ Tutumlarının Farklı Değişkenler Açısından İncelenmesi. Trakya Eğitim Dergisi, 14(2), 1173-1180. https://doi.org/10.24315/tred.1430419
  • Benhamou, S. (2020). Artificial intelligence and the future of work. Revue d'économie industrielle, (169), 57-88. DOI: https://doi.org/10.4000/rei.8727
  • Berner, J., Dallora, A. L., Palm, B., Sanmartin Berglund, J., & Anderberg, P. (2023). Five-factor model, technology enthusiasm and technology anxiety. Digital Health, 9. https://doi.org/10.1177/20552076231203.
  • Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In K. Frankish & W. M. Ramsey (Eds.), The Cambridge handbook of artificial intelligence (pp. 316–334). Cambridge University Press
  • Büyüköztürk, Ş. (2011) Sosyal Bilimler İçin Veri Analizi El Kitabı. 14. Baskı, Pegem Akademi.
  • Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers & Education, 105, 1-13. https://doi.org/10.1016/j.compedu.2016.11.003
  • Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia computer science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
  • Christensen, R., & Knezek, G. (2017). Readiness for integrating mobile learning in the classroom: Challenges, preferences and possibilities. Computers in human Behavior, 76, 112-121. https://doi.org/10.1016/j.chb.2017.07.01
  • Cooper, J. (2006). The digital divide: The special case of gender. Journal of computer assisted learning, 22(5), 320-334. https://doi.org/10.1111/j.1365-2729.2006.00185.x
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative and mixed method approaches (4th ed.). Sage.
  • Çam, M. B., Çelik, N. C., Güntepe, E. T., & Durukan, Ü. G. (2021). Öğretmen adaylarının yapay zekâ teknolojileri ile ilgili farkındalıklarının belirlenmesi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(48), 263-285.
  • Davis, F. D. (1989). Technology Acceptance Model: TAM. In M. N. Al-Suqri, & A. S. Al-Aufi (Eds.), Information Seeking Behavior and Technology Adoption (pp. 205-219). IGI Global.
  • Denis, D. J. (2019). SPSS data analysis for univariate, bivariate, and multivariate statistics. John Wiley & Sons.
  • Deniz, S. S. (2022). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. Socıal Mentalıty And Researcher Thınkers Journal (SMART JOURNAL), 8(63), 1675-1677. https://doi.org/10.29228/smryj.64393
  • Dikmen, S., & Bahçeci, F. (2024). Eğitim Bilimleri Alanında Yapay Zekâ Konulu Bilimsel Yayınların Eğilimleri: Bibliyometrik Bir İnceleme. Socrates Journal of Interdisciplinary Social Researches, 10(46), 98-112. Doi: 10.5281/zenodo.13981118
  • Erdoğan, Ş., & Bozkurt, E. (2023). Examining the Perceptions of Prospective Physics Teachers on the Concept of “Artificial Intelligence”: A Metaphor Study. Journal of Civilization and Society, 7(2), 152-163. http://dx.doi.org/10.51117/metder.2023.41
  • Fishbein, M. and Ajzen, I. (1975) Belief, Attitude, Intention, and Behavior. New York: Wiley
  • Fošner, A. (2024). University Students’ attitudes and perceptions towards AI tools: Implications for sustainable Educational practices. Sustainability, 16(19), 8668. https://doi.org/10.3390/su16198668
  • Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). Educational research: Competencies for analysis and applications. Pearson.
  • Gefen, D., & Straub, D. W. (1997). Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Quarterly, 21(4), 389-400. https://doi.org/10.2307/249720
  • Gocen, A., & Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13-21. https://doi.org/10.2478/rem-2020-0003
  • Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4), 597-607.
  • Guilherme, A. (2019). Considering AI in Education: Erziehung but Never Bildung. In: Knox, J., Wang, Y., Gallagher, M. (eds) Artificial Intelligence and Inclusive Education. Perspectives on Rethinking and Reforming Education. Springer, Singapore. https://doi.org/10.1007/978-981-13-8161-4_10
  • Harry, A. (2023). Role of AI in Education. Interdiciplinary Journal and Hummanity (INJURITY), 2(3), 260-268. https://doi.org/10.58631/injurity.v2i3.52.
  • Haseski, H. I. (2019). What do Turkish pre-service teachers think about artificial intelligence?. International Journal of Computer Science Education in Schools, 3(2), 3-23. https://doi.org/10.21585/ijcses.v3i2.55
  • Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120. https://doi.org/10.1016/j.techfore.2015.12.014
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign.
  • Holmes, W., Bidarra, J., & Simonsen, H. K. (2021). Artificial intelligence in higher education: a roadmap and future perspectives. Forsøg med uddannelsesdigitalisering og hybride formater, 121-138.
  • Hopcan, S., Türkmen, G., & Polat, E. (2024). Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates. Education and Information Technologies, 29(6), 7281-7301. https://doi.org/10.1007/s10639-023-12086-9
  • Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687
  • İşler, B., & Kılıç, M. (2021). Eğitimde Yapay Zekâ Kullanimi ve Gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11. https://doi.org/10.17932/IAU.EJNM.25480200.2021/ejnm_v5i1001
  • Karimi, H., & Khawaja, S. (2023). The Impact of Artificial Intelligence on Higher Education in England. Creative Education, 14, 2405-2415. https://doi.org/10.4236/ce.2023.1412154
  • Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2022). The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal of Human–Computer Interaction, 40(2), 497–514. https://doi.org/10.1080/10447318.2022.2151730
  • Kim, S., Kim, S., Lee, M., & Kim, H. (2020). Review on artificial intelligence education for K-12 students and teachers. The Journal of Korean association of computer education, 23(4), 1-11. https://doi.org/10.32431/kace.2020.23.4.001
  • Köse, B. B., Radıf, H., Uyar, B., Baysal, İ., & Demirci, N. (2024). Öğretmen Görüşlerine Göre Eğitimde Yapay Zekânın Önemi. Journal Of Socıal, Humanıtıes And Admınıstratıve Scıences (JOSHAS), 9(71), 4203-4209. https://doi.org/10.29228/JOSHAS.74125
  • Latif, E., Zhai, X., & Liu, L. (2023). Ai gender bias, disparities, and fairness: Does training data matter?. arXiv preprint arXiv:2312.10833.
  • Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63. https://doi.org/10.1016/j.techsoc.2020.101410
  • Li, N., & Kirkup, G. (2007). Gender and cultural differences in Internet use: A study of China and the UK. Computers & Education, 48(2), 301-317. https://doi.org/10.1016/j.compedu.2005.01.007
  • Liu, M., Ren, Y., Nyagoga, L. M., Stonier, F., Wu, Z., & Yu, L. (2023). Future of education in the era of generative artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools. Future in Educational Research, 1(1), 72-101. https://doi.org/10.1002/fer3.10
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education.
  • Lund, B. D., Mannuru, N. R., & Agbaji, D. (2024). AI anxiety and fear: A look at perspectives of information science students and professionals towards artificial intelligence. Journal of Information Science, 0(0). https://doi.org/10.1177/01655515241282001
  • Manyika, J., Lund, S., Chui, M., Bughin, J., Woetzel, J., Batra, P., Ko, R., Sanghvi, S. McKinsey & Company. (2017). What the future of work will mean for jobs, skills, and wages, McKinsey Global Institute, https://www.mckinsey.com/ featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-futureof-work-will-mean-for-jobs-skills-and-wages
  • Mart, M., & Kaya, G. (2024). Okul öncesi öğretmen adaylarının yapay zekâya yönelik tutumları ve yapay zekâ okur yazarlığı arasındaki ilişkinin incelenmesi. Edutech Research, 2(1), 91-109.
  • Maxwell, J. A. (2016). The validity and reliability of research: A realist perspective. In D. Wyse, L. E. Suter, E. Smith, & N. Selwyn (Eds.), The BERA/SAGE Handbook of Educational research (pp. 116–140). Sage
  • Mellinger, C. D., & Hanson, T. A. (2020). Methodological considerations for survey research: Validity, reliability, and quantitative analysis. Linguistica Antverpiensia, New Series–Themes in Translation Studies, 19. https://doi.org/10.52034/lanstts.v19i0.549
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nd ed). Thousand Oaks, CA: Sage.
  • Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B. P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
  • Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. Journal of Language and Cultural Education, 7(3), 135-153. https://doi.org/10.2478/jolace-2019-0025
  • Pokrivcakova, S. (2023). Pre-service teachers’ attitudes towards artificial intelligence and its integration into EFL teaching and learning. Journal of Language and Cultural Education, 11(3), 100-114. https://doi.org/10.2478/jolace-2023-0031
  • Rosen, L. D., & Weil, M. M. (1995). Computer availability, computer experience, and technophobia among public school teachers. Computers in Human Behavior, 11(1), 9-31.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in human behavior reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin Eğitimde Yapay Zekâ Kullanımına Yönelik Algıları. International Journal of Social and Humanities Sciences Research (JSHSR), 11(106), 845-856. https://doi.org/10.5281/zenodo.11113077
  • Shirin, A. (2022). Artificial Intelligence Technology on Teaching-Learning: Exploring Bangladeshi Teachers’ Perceptions. Embedded Selforganising Systems, 9(4), 3-9. https://doi.org/10.14464/ess.v9i4.553
  • Stein, J. P., Messingschlager, T., Gnambs, T., Hutmacher, F., & Appel, M. (2024). Attitudes towards AI: measurement and associations with personality. Scientific Reports, 14(1), 2909. https://doi.org/10.1038/s41598-024-53335-2
  • Suh, W., & Ahn, S. (2022). Development and validation of a scale measuring student attitudes toward artificial intelligence. Sage Open, 12(2), https://doi.org/10.1177/21582440221100463.
  • Tang, L., & Su, Y. S. (2024). Ethical Implications and Principles of Using Artificial Intelligence Models in the Classroom: A Systematic Literature Review. International Journal of Interactive Multimedia & Artificial Intelligence, 8(5). https://doi.org/10.9781/ijimai.2024.02.010.
  • Tekin, N. (2023). Eğitimde yapay zekâ: Türkiye kaynaklı araştırmaların eğilimleri üzerine bir içerik analizi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(Özel Sayı), 387-411. https://doi.org/10.51119/ereegf.2023.49
  • Teo, T. (2010). A path analysis of pre-service teachers’ attitudes to computer use: Applying and extending the technology acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79. https://doi.org/10.1080/10494820802231327
  • Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432-2440. https://doi.org/10.1016/j.compedu.2011.06.008
  • Terzi, R. (2020). An Adaptation of Artificial Intelligence Anxiety Scale into Turkish: Reliability and Validity Study. International Online Journal of Education and Teaching, 7(4), 1501-1515.
  • Uygun, D. (2024). Teachers' perspectives on artificial intelligence in education. Advances in Mobile Learning Educational Research, 4(1), 931-939. https://doi.org/10.25082/AMLER.2024.01.005
  • VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  • Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887
  • Yeşilyurt, S., Dündar, R., & Demir, R. Z. (2024). Türkiye’de yapay zekâ ve eğitim ilişkisini inceleyen lisansüstü tezlerin analizi: Bir meta sentez çalışması. Journal of Innovative Research in Social Studies. 7(1), 47-73. https://doi.org/10.47503/jirss.1484848
  • Yue, M., Jong, M. S. Y., & Ng, D. T. K. (2024). Understanding K–12 teachers’ technological pedagogical content knowledge readiness and attitudes toward artificial intelligence education. Education and Information Technologies, 1-32. https://doi.org/10.1007/s10639-024-12621-2
  • Yue, M., Jong, M. S.-Y., & Dai, Y. (2022). Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review. Sustainability, 14(23), 15620. https://doi.org/10.3390/su142315620
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. https://doi.org/10.1155/2021/8812542
  • Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. http://dx.doi.org/10.2139/ssrn.3312874.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Teacher Education and Professional Development of Educators
Journal Section Articles
Authors

Üzeyir Yeniçeri 0000-0003-3993-9771

Adem Kenan 0000-0001-6012-9488

Publication Date July 28, 2025
Submission Date January 23, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Yeniçeri, Ü., & Kenan, A. (2025). Öğretmen Adaylarının Yapay Zekâya Yönelik Tutum ve Kaygılarının Çeşitli Değişkenler Açısından Betimsel Analizi. Ege Eğitim Dergisi, 26(2), 226-245. https://doi.org/10.12984/egeefd.1625648